质量是多少的恒星爆炸后回变成黑洞

质量是多少的恒星爆炸后回变成黑洞,第1张

斯皮策太空望远镜捕捉到的宇宙中隐藏黑洞的,其中**亮点表示一个内含“类星体”黑洞的遥远星系,它的外围被一层宇宙气体尘埃紧密环绕。

新浪科技讯 近日国际天文学家通过美国宇航局斯皮策太空望远镜的一项最新观测结果,在宇宙中某一狭窄区域范围内,首次同时发现了多达21处却一直深度隐藏着的宇宙“类星体”黑洞群。

这一重大发现第一次从正面证实了多年来天文学领域有关宇宙中有数目众多的隐身黑洞广泛存在的推测。充分的证据使人们相信,在浩瀚的宇宙中,的确充满着各种各样未被发现的巨大引力源泉--"类星体"黑洞群体。有关该项最新发现的详细内容,研究人员已撰文正式刊登在了2005年8月4日出版的《自然》杂志中。

“深藏不露”的类星体

我们知道在现实中的宇宙黑洞,由于其巨大的引力作用,连光线都被紧密吸引束缚,因而无法被人们直接观测发现。为确定黑洞天体存在的证据,天文学家通过研究发现,在黑洞周围的物质行为具有其特定行为:在黑洞周围的宇宙空间中,气体物质具有超高的温度,并且在被黑洞强大引力场吸引剧烈加速后,这些物质在彻底消失之前均会被提升到接近光速。而当气体物质被黑洞彻底吞噬后,整个过程都会释放出大量的X-射线。通常正是这些逃逸出来的X-射线,显示出此处有黑洞确实存在的迹象。这便是以往人们发现黑洞的最直接证据。

而另一方面,在一些格外活跃的超大型宇宙黑洞周围,由于其对周边物质剧烈的吸引和吞噬行为,还会在黑洞星体外围产生一层厚重的宇宙气体和尘埃云层,这便进一步增大了对黑洞体附近区域的观测难度,阻碍了天文学家对这些超大黑洞存在的发现工作。天文学上将这些极度活跃的黑洞定义为"类星体"。普通情况下,一 个类星体平均一年总共吞噬的物质质量,相当于1000个中等恒星质量的总和。一般情况下,这些类星体距离太阳系都非常遥远,当我们观测到他们时已经是亿万年以后的现在,这说明此类黑洞的活动出现在宇宙诞生初期。科学家推定,这种黑洞正是在成长壮大中的宇宙星系前身,所以将其命名为"类星体"。

到目前为止,只有为数不多的几个"类星体"黑洞被发现,在浩瀚的宇宙深处,是否还有数量众多的其它类星体存在,仍有待人们进一步去发现,而天文学家在该领域的研究工作则完全依靠对宇宙内部X-射线的全面观测研究来予以证实。

“充满”了黑洞的宇宙

近日,来自英国牛津大学的阿里耶-马丁内兹-圣辛格教授在介绍其首次对宇宙间隐藏黑洞的发现时说,"从以往对宇宙X-射线的观察研究中,本希望能找到宇宙中大量隐藏类星体存在的证据,但结果确都不尽如人意,令人失望。"而近日根据美国宇航局NASA的斯皮策太空望远镜(Spitzer Space Telescope)的最新观察结果,天文学家则成功穿透了遮蔽类星体黑洞的外围宇宙尘埃云层,捕捉到了其中一直暗藏不露的内部黑洞体。由于斯皮策太空望远镜能够有效收集能穿透宇宙尘埃层的红外光线,使得研究人员顺利地在一个非常狭窄的宇宙空间区域内,同时发现了数量多达21个早已存在却又"隐藏不露"的类星体黑洞群。

来自美国加州理工大学斯皮策科学中心的研究小组成员马克-雷斯在接受媒体访问时同时也表示,“如果我们抛开此次发现的21个宇宙类星体黑洞,放眼宇宙中的其它任何区域,我们完全可以大胆预测,必将有数量众多隐藏着的黑洞将会被陆续发现。这意味着,一如我们原先推测的那样,在不为人知的宇宙深处,一定有数量众多、质量超大的黑洞巨无霸,正借助着星际尘埃的隐蔽,在暗地里不断发展壮大着。”

群星之间,并不是空无一物,而是布满了物质,是气体,尘埃或两者的混合物其中一种低温,不发光的星际尘云,相信是形成恒星的基本材料

这些黑暗的星际尘云温度很低,约为摄氏-260至-160之间天文学家发现这类物质如果没有什麼外力的话,这些星际尘云就如天上的云朵,在太空中天长地久的飘著但是如果有些事情发生,例如邻近有颗超新星爆炸,产生的震波通过星际尘云时,会把它压缩,而使星际尘云的密度增加到可以靠本身的重力持续收缩这种靠本身重力使体积越缩越小的过程,称为”重力溃缩”也有一些其他的外力,如银河间的磁力或尘云间的碰撞,也可能使星际云产生重力溃缩

大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩体积越缩越小,核心的温度也越来越高,密度也越来越大当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近於摄氏一千万度左右当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应此时,一颗叫太阳的恒星便诞生了

经过一连串的核反应,会消耗掉四个氢核,形成一个氦核,而损失了一点点的质量依据爱因斯坦质量和能量互换的方程式E=MC^2,损失的质量转化为光和热辐射出去,经过一路的碰撞,吸收再发射的过程,最后光和热传到太阳表面,再辐射到太空中一去不返,这也就是我们所看到的太阳辐射当太阳中心区域氢融合反应产生的能量传到表面时,大部份以可见光的形式辐射到太空

在五十忆年前刚形成的太阳并不稳定,体积缩胀不定收缩的重力遭到热膨胀压力的阻挡,有时热膨胀力扬头,超过了重力,恒星大气因此膨胀但是一膨胀,温度就跟著下降膨胀过头,导致温度过低,使热膨胀压力挡不住重力,则恒星大气开始收缩同样的,一收缩,温度就跟著上升,收缩过头,导致温度过高,又使热膨胀压力超过重力, 恒星大气又开始膨胀

这种膨胀,收缩的过程反覆发生,加上周围还笼罩在云气中,因此亮度变化很不规则但是胀缩的程度慢慢缩小,最后热膨胀力和收缩力达到平衡,进入稳定期此时,太阳是一颗**的恒星,差不多就像我们现在看到的一样

太阳进入稳定期后,相当稳定的发出光和热,可以持续一百亿年之久这期间占太阳一生中的90%,天文学家特称为”主序星”时期太阳成为一颗**主序星,至今己有五十亿年,再过五十亿年,太阳度过一生的黄金岁月后,将进入晚年

有足够长的稳定期,对行星上的生命发生非常重要以地球的经验来说,地球太约和太阳同时形成,将近十亿年后才出现生命,经过四十多亿年后,才发展出高等智慧的生物因此,天文学家要找外星生命,只对生存期超过四十亿的恒星有兴趣

太阳在晚年将成为红巨星

太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包著的一层正在进行氢融合反应,再外围便是太阳的一般物质氢融合反应产生的光和热,正好和收缩的重力相同核心区域的氦由於温度较低,而氦的密度又比氢大,所以重力大於热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围

随著太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”

在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关想想果冻的情形,轻拍一下果冻,它便会晃动,而且果冻越大,晃动的程度越小同样的道理,红巨星的体积越大,膨胀,收缩的周期也越长

简单来说,五十亿年后,太阳核心区域收缩的热将导致外部膨胀,变成一颗红巨星充满氦的核心区域则持续收缩,温度也随之增加当核心区域的温度升至一亿度时,开始发生氦融合反应,三个氦经过一连串的核反应后融合成为一个碳,放出比氢融合反应更巨量的光和热,使太阳外层急速膨胀,连地球也吞没了,成为一个体积超大的红色超巨星

太阳的末路:白矮星

相似的过程是在红色超巨星的核心区域再次发生,碳累积越来越多,碳的密度比氦大,相对的收缩的重力也更大,史的碳构成的核心区域收缩下去但是当此区域收缩到非常紧密结实的程度,也就是碳原子核周围所有的电子都挤在一起,挤到不能再挤时,这种紧密的压力挡住了重力收缩虽然此时的温度比摄氏一亿度高很多,但是还没有高到可以产生碳融合反应的地步因此,太阳核心区域不再收缩,但也没有多余的热使外层膨胀,就如此僵持著,形成了白矮星由於白矮星的核心没有核融合反应来供给光与热,整个星球越来越暗,逐渐黯淡下去,最后变成一颗不发光的死寂星球----黑矮星经过理论上的计算,白矮星慢慢冷却变成黑矮星的过程非常漫长,超过一百多亿年,而银河系的形成至今不过一百多亿年,因此天文学家认为银河系还没有老到可以形成黑矮星

经过计算,太阳体积缩小一百万倍,约像地球一样大时,物质间拥挤的的程度才足以抗拒重力收缩想想,质量与太阳相当,体积却只有地球大小,很容易算出白矮星的密度比水重一百万倍,也就是说一一方公分的物质约有一公吨重,是非常特别的物质状态,物理学家称为简并状态原子是由原子核和电子构成一般人都看过电子围绕原子核的图画或动画,虽然是简化的示意图,却也反映了微小的物质状态通常电子都在距离原子核很远的地方绕转著,如果温度逐渐降低,或是外力逐渐增加,则电子的活动范围便被押挤而越来越小,逐渐靠近原子核但是电子与原子核之间的距离有其最小范围,电子不能越过这道界线就像围绕在玻璃珠周围的沙粒一样,沙粒最多依附在玻璃珠表面,而无法压入玻璃珠中

同样的,当所有的电子都被迫压挤再原子的表层时,物质状态达到了一个临界,即使在增加压力,也无法将电子往内压挤这种由电子处於最内层而产生的抗压力称为电子简并压力依据理论推算,质量小於一点四个太阳质量的星球重力,不足以压垮电子简并压力,因此白矮星的质量不能比一点四个太阳质量更大到目前为止,所发现的白矮星数量超过数百个,也都符合这个理论这个上限首先是由一个印度天文学家钱德拉沙哈(Subrahmanyan Chandrasekhar 1910-1995)在1931年利用量子力学所求出来的,因此称为钱式极限(Chandrasekhar’s limit)

当钱德沙哈拉当年提出的这种由电子简并压力挡住重力收缩的星球时,并没有得到赞扬,再英国皇家天文学会在一九三五年所举办的研讨会中,更受到当代大师爱丁顿(Authur Eddington)爵士打压,认为宇宙中并没有这种天体德拉沙哈受到这个打击后,没有办法在即刊上发表论文,因此他写了一本书<<恒星的结构与演化>>,后来成为这个领域中的经典之作为什麼要称之为白矮星呢这是因为第一哥确定的白矮星是天狼星的伴星,颜色属高温的青白色,但是体积如此小,因此称之为白矮星,但是后来陆续发现许多同类的恒星,星光颜色属於温度较低的**橙色,但是仍然称它们为白矮星白矮星因此成为一个专有名词,专指这类由电子简并压力挡住重力收缩的星球

有关星星历史上的记载与传说

不论中外,有关昂宿星团的记载都超过三千多年,它就是北天最明亮的星团之一这个看起来模糊的一团天体,我国称之为昂宿,是二十八星宿中的一个诗经中的<昭南小星>就已经提到昂宿,<尔雅>释天中也提到西路昂也,昂的意思是毛毛的,所以称之为昂。史记—天关书中昂曰髦头,就是这个意思。昂宿星团在日本神话故事中,有许多不同的名称和故事,但大都与农业和渔业有关。例如在日本有些农业区,当看到昂宿星团与太阳一同升起时,表示到了春天播种的季节。有些沿海的地区,余名看到昂宿星团升起与落下来决定是否撒网。而在希腊神话中,七姊妹是擎天神阿特拉斯的女儿,她们是月亮女神阿特密斯的宫女,有一天再草原上玩耍的十,猎户奥莱翁突然闯了进来,七姊妹吓的逃到天上,躲在女神的袖子里,事后女神打开衣袖只见七只鸽子缩成一团。虽然奥莱翁无法抓到她们,但是他却一直追求著,直到天神宙斯同情而将她们安置在天上,成为七姊妹星团。从天文学的角度上看,最有可能的情况是第七颗星是一颗变星,原来很亮,后来变暗了。依据天文学家的研究,昂宿星团是一个行程至今约一亿年的年轻星团,其中包含许多亮度变化不规则的变星。由於昂宿星团属於年轻的星团,其中一些寿命很短的恒星才刚进入演化末期,这些恒星的亮度大都不稳定,例如金牛座BU星就是一颗亮度变化不规则的变星。

重质量恒星的演化

当这些物质以高速撞击在坚硬无比的内核区域时,产生强大的反弹力,而形成向外传播的震波。这种情形就像一个人用力拍桌子,越用力,产生反弹力道也越大。震波以超音速往外震动,挤压外层物质,促使温度急速升高,因此整个星球由内重质量恒星的稳定期依其质量有很大的差别,击中质量恒星的寿命相当短,只有数千万年质量比太阳大倍以上的恒星寿命大约为数亿年至数十亿年。重质量恒星短寿的原因是质量大,导致收缩的重力也非常强而有力,使得恒星内和区域温度比较高,连带使核反应速率更劲爆,发出威猛的光与热,造成核星表面的温度比太阳型恒星高数倍以上,向太空辐射的光与热成几何级数增加当恒星形成时,质量就已经固定,因此恒星发光发热都是在吃老本。重质量恒星本钱虽比太阳要多,但是其发热的速度却是数十倍以上,显然很快的便耗尽核反应的原料而进入演化的末期

中子星

原子的直径范围比原子核大上一万倍,所以当电子被挤压进入原子核时,直径就缩小了一万倍以上,体积则缩小了一兆倍以上。因此,所有物质都成为中子时,体积可以说是小的惊人,密度也大的吓人。抗压力更是大。这种以中子紧密压挤在一起的抗压力,称为{中子简并压力}。依据理论,重质量恒星在演化末期,核心区域的质量如果在二至三个太阳质量之间,则强大的重力会把物质挤压成为中子。此时星球直径约为三十公里左右,强大的中子简并压力挡住了重力,星球不在收缩成为一个中子星。说到这里,中子星的故事并不完整,前面只其到恒星中央区域的情形,因此还要加上外层区域的变化情形,才会完整。经由目前物理学家仍不完全了解的过程,中心区域的物质全被挤压成中子时,星球内部的物质随著强大的重力陷向中心,陷落得速度非常快,核区域到表层的温度都高到能产生核融合反应。想想,如果地球上所有氢弹同时爆炸的情景。这可是整个星球都在发生核融合反应,将整个星球炸碎,形成天文学家所说的”超新星爆炸”。超新星爆炸有如烟火一样四射,只是规模大的多,持续得时间也久,整个超新星爆炸有如烟火一般四射,只是规模大的多,持续的时间也久。整个超新星爆炸扩散的过程可以持续数千年至数万年之久,阔至张范围渴达数十光年之远。在银河系中,超新星爆炸是最壮观的事件了。总结来说,质量比太阳大三倍以上的恒星就可能产生超新星爆炸。而炸碎后中心留下一个中子星。中子星主要经由中子构成,直径约为数十公里,密度是水的数千万至一亿倍,真是个异常的星球。

黑洞

质量在六个至八个太阳质量以上的恒星,在演化末期发生超过超新星爆炸时,如果内核区域的质量大於三个太阳质量,则连中子简并压力也抵挡不住强大的重力收缩,物质只好一路收缩下去,目前只有爱因斯坦提出的广义相对论可以解释这种问题。依据理论,物质缩小到约三公里左右,进入一个连光线都无法脱逃的范围,除了总值量,电核自转外,失去的所有的讯息,理问物理学家称这种奇异的状态为”黑洞”。既然黑洞不发光,那麼要如何去发现他勒对於单独的黑洞,物理学家仍想不出好方法,但是如果黑洞是双星系统之一,则可以藉由观测双星的运动来推估看不到的伴星质量,伴星质量超过三个太阳质量而又看不到他,则可能是黑洞了。在双星系统中,如果其中之一是黑洞,则另外一颗恒星在演化晚期膨胀成为超巨星时,膨胀的物质会被黑洞强大的重力吸引,盘旋般向黑洞陷落。在盘旋陷落得过程中,形成一个吸积盘。物质在吸积盘中盘旋陷落得过程中,一路碰撞推挤,半径越来越小,温度也随之升高。在吸积盘内层温度高达摄氏百万度,发出X光。因此,天文学家搜索X光双星系统来推算看不见的伴星质量,如果这个看不见的伴星质量超过三个太阳质量,则认为他是黑洞的候选者。经过科学家近一百年的探究,对恒星结构的演变勾勒出一个轮廓,让我们认识恒星如何演变,步向终局的故事。其中有的恒星不由自主的步向轰轰烈烈的爆炸,许多元素像是钙,矽,铁等,就藉著超新星爆炸四散成为星际介质。这些物质在机缘巧合下,化作春泥更护化,经过重力的压缩后,又成为一颗灿烂的恒星,由於有这些元素,因此可以形成类似地球的行星,称命的发生也是要靠这些元素。例如在人体里面,血的成份有铁,骨骼有钙等,所以天文学家常说:”我们是超新星的子民’’

回答者:zengzengdede - 助理 二级 8-28 19:58

提问者对于答案的评价:

谢谢

评价已经被关闭 目前有 0 个人评价

50% (0) 不好

50% (0)

其他回答共 4 条

参考资料:

http://zhidaobaiducom/question/11888213html

回答者:zhangxuxin8765 - 举人 四级 10-6 07:35

提问者对于答案的评价:

好好好好好好好好好好好好好好好

其他回答共 7 条

在群星之间,并不是空无一物,而是布满了物质,是气体,尘埃或两者的混合物其中一种低温,不发光的星际尘云,相信是形成恒星的基本材料

这些黑暗的星际尘云温度很低,约为摄氏-260至-160之间天文学家发现这类物质如果没有什麼外力的话,这些星际尘云就如天上的云朵,在太空中天长地久的飘著但是如果有些事情发生,例如邻近有颗超新星爆炸,产生的震波通过星际尘云时,会把它压缩,而使星际尘云的密度增加到可以靠本身的重力持续收缩这种靠本身重力使体积越缩越小的过程,称为”重力溃缩”也有一些其他的外力,如银河间的磁力或尘云间的碰撞,也可能使星际云产生重力溃缩

大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩体积越缩越小,核心的温度也越来越高,密度也越来越大当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近於摄氏一千万度左右当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应此时,一颗叫太阳的恒星便诞生了

经过一连串的核反应,会消耗掉四个氢核,形成一个氦核,而损失了一点点的质量依据爱因斯坦质量和能量互换的方程式E=MC^2,损失的质量转化为光和热辐射出去,经过一路的碰撞,吸收再发射的过程,最后光和热传到太阳表面,再辐射到太空中一去不返,这也就是我们所看到的太阳辐射当太阳中心区域氢融合反应产生的能量传到表面时,大部份以可见光的形式辐射到太空

在五十忆年前刚形成的太阳并不稳定,体积缩胀不定收缩的重力遭到热膨胀压力的阻挡,有时热膨胀力扬头,超过了重力,恒星大气因此膨胀但是一膨胀,温度就跟著下降膨胀过头,导致温度过低,使热膨胀压力挡不住重力,则恒星大气开始收缩同样的,一收缩,温度就跟著上升,收缩过头,导致温度过高,又使热膨胀压力超过重力, 恒星大气又开始膨胀

这种膨胀,收缩的过程反覆发生,加上周围还笼罩在云气中,因此亮度变化很不规则但是胀缩的程度慢慢缩小,最后热膨胀力和收缩力达到平衡,进入稳定期此时,太阳是一颗**的恒星,差不多就像我们现在看到的一样

太阳进入稳定期后,相当稳定的发出光和热,可以持续一百亿年之久这期间占太阳一生中的90%,天文学家特称为”主序星”时期太阳成为一颗**主序星,至今己有五十亿年,再过五十亿年,太阳度过一生的黄金岁月后,将进入晚年

有足够长的稳定期,对行星上的生命发生非常重要以地球的经验来说,地球太约和太阳同时形成,将近十亿年后才出现生命,经过四十多亿年后,才发展出高等智慧的生物因此,天文学家要找外星生命,只对生存期超过四十亿的恒星有兴趣

太阳在晚年将成为红巨星

太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包著的一层正在进行氢融合反应,再外围便是太阳的一般物质氢融合反应产生的光和热,正好和收缩的重力相同核心区域的氦由於温度较低,而氦的密度又比氢大,所以重力大於热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围

随著太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”

在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关想想果冻的情形,轻拍一下果冻,它便会晃动,而且果冻越大,晃动的程度越小同样的道理,红巨星的体积越大,膨胀,收缩的周期也越长

简单来说,五十亿年后,太阳核心区域收缩的热将导致外部膨胀,变成一颗红巨星充满氦的核心区域则持续收缩,温度也随之增加当核心区域的温度升至一亿度时,开始发生氦融合反应,三个氦经过一连串的核反应后融合成为一个碳,放出比氢融合反应更巨量的光和热,使太阳外层急速膨胀,连地球也吞没了,成为一个体积超大的红色超巨星

太阳的末路:白矮星

相似的过程是在红色超巨星的核心区域再次发生,碳累积越来越多,碳的密度比氦大,相对的收缩的重力也更大,史的碳构成的核心区域收缩下去但是当此区域收缩到非常紧密结实的程度,也就是碳原子核周围所有的电子都挤在一起,挤到不能再挤时,这种紧密的压力挡住了重力收缩虽然此时的温度比摄氏一亿度高很多,但是还没有高到可以产生碳融合反应的地步因此,太阳核心区域不再收缩,但也没有多余的热使外层膨胀,就如此僵持著,形成了白矮星由於白矮星的核心没有核融合反应来供给光与热,整个星球越来越暗,逐渐黯淡下去,最后变成一颗不发光的死寂星球----黑矮星经过理论上的计算,白矮星慢慢冷却变成黑矮星的过程非常漫长,超过一百多亿年,而银河系的形成至今不过一百多亿年,因此天文学家认为银河系还没有老到可以形成黑矮星

经过计算,太阳体积缩小一百万倍,约像地球一样大时,物质间拥挤的的程度才足以抗拒重力收缩想想,质量与太阳相当,体积却只有地球大小,很容易算出白矮星的密度比水重一百万倍,也就是说一一方公分的物质约有一公吨重,是非常特别的物质状态,物理学家称为简并状态原子是由原子核和电子构成一般人都看过电子围绕原子核的图画或动画,虽然是简化的示意图,却也反映了微小的物质状态通常电子都在距离原子核很远的地方绕转著,如果温度逐渐降低,或是外力逐渐增加,则电子的活动范围便被押挤而越来越小,逐渐靠近原子核但是电子与原子核之间的距离有其最小范围,电子不能越过这道界线就像围绕在玻璃珠周围的沙粒一样,沙粒最多依附在玻璃珠表面,而无法压入玻璃珠中

同样的,当所有的电子都被迫压挤再原子的表层时,物质状态达到了一个临界,即使在增加压力,也无法将电子往内压挤这种由电子处於最内层而产生的抗压力称为电子简并压力依据理论推算,质量小於一点四个太阳质量的星球重力,不足以压垮电子简并压力,因此白矮星的质量不能比一点四个太阳质量更大到目前为止,所发现的白矮星数量超过数百个,也都符合这个理论这个上限首先是由一个印度天文学家钱德拉沙哈(Subrahmanyan Chandrasekhar 1910-1995)在1931年利用量子力学所求出来的,因此称为钱式极限(Chandrasekhar’s limit)

当钱德沙哈拉当年提出的这种由电子简并压力挡住重力收缩的星球时,并没有得到赞扬,再英国皇家天文学会在一九三五年所举办的研讨会中,更受到当代大师爱丁顿(Authur Eddington)爵士打压,认为宇宙中并没有这种天体德拉沙哈受到这个打击后,没有办法在即刊上发表论文,因此他写了一本书<<恒星的结构与演化>>,后来成为这个领域中的经典之作为什麼要称之为白矮星呢这是因为第一哥确定的白矮星是天狼星的伴星,颜色属高温的青白色,但是体积如此小,因此称之为白矮星,但是后来陆续发现许多同类的恒星,星光颜色属於温度较低的**橙色,但是仍然称它们为白矮星白矮星因此成为一个专有名词,专指这类由电子简并压力挡住重力收缩的星球

有关星星历史上的记载与传说

不论中外,有关昂宿星团的记载都超过三千多年,它就是北天最明亮的星团之一这个看起来模糊的一团天体,我国称之为昂宿,是二十八星宿中的一个诗经中的<昭南小星>就已经提到昂宿,<尔雅>释天中也提到西路昂也,昂的意思是毛毛的,所以称之为昂。史记—天关书中昂曰髦头,就是这个意思。昂宿星团在日本神话故事中,有许多不同的名称和故事,但大都与农业和渔业有关。例如在日本有些农业区,当看到昂宿星团与太阳一同升起时,表示到了春天播种的季节。有些沿海的地区,余名看到昂宿星团升起与落下来决定是否撒网。而在希腊神话中,七姊妹是擎天神阿特拉斯的女儿,她们是月亮女神阿特密斯的宫女,有一天再草原上玩耍的十,猎户奥莱翁突然闯了进来,七姊妹吓的逃到天上,躲在女神的袖子里,事后女神打开衣袖只见七只鸽子缩成一团。虽然奥莱翁无法抓到她们,但是他却一直追求著,直到天神宙斯同情而将她们安置在天上,成为七姊妹星团。从天文学的角度上看,最有可能的情况是第七颗星是一颗变星,原来很亮,后来变暗了。依据天文学家的研究,昂宿星团是一个行程至今约一亿年的年轻星团,其中包含许多亮度变化不规则的变星。由於昂宿星团属於年轻的星团,其中一些寿命很短的恒星才刚进入演化末期,这些恒星的亮度大都不稳定,例如金牛座BU星就是一颗亮度变化不规则的变星。

重质量恒星的演化

当这些物质以高速撞击在坚硬无比的内核区域时,产生强大的反弹力,而形成向外传播的震波。这种情形就像一个人用力拍桌子,越用力,产生反弹力道也越大。震波以超音速往外震动,挤压外层物质,促使温度急速升高,因此整个星球由内重质量恒星的稳定期依其质量有很大的差别,击中质量恒星的寿命相当短,只有数千万年质量比太阳大倍以上的恒星寿命大约为数亿年至数十亿年。重质量恒星短寿的原因是质量大,导致收缩的重力也非常强而有力,使得恒星内和区域温度比较高,连带使核反应速率更劲爆,发出威猛的光与热,造成核星表面的温度比太阳型恒星高数倍以上,向太空辐射的光与热成几何级数增加当恒星形成时,质量就已经固定,因此恒星发光发热都是在吃老本。重质量恒星本钱虽比太阳要多,但是其发热的速度却是数十倍以上,显然很快的便耗尽核反应的原料而进入演化的末期

中子星

原子的直径范围比原子核大上一万倍,所以当电子被挤压进入原子核时,直径就缩小了一万倍以上,体积则缩小了一兆倍以上。因此,所有物质都成为中子时,体积可以说是小的惊人,密度也大的吓人。抗压力更是大。这种以中子紧密压挤在一起的抗压力,称为{中子简并压力}。依据理论,重质量恒星在演化末期,核心区域的质量如果在二至三个太阳质量之间,则强大的重力会把物质挤压成为中子。此时星球直径约为三十公里左右,强大的中子简并压力挡住了重力,星球不在收缩成为一个中子星。说到这里,中子星的故事并不完整,前面只其到恒星中央区域的情形,因此还要加上外层区域的变化情形,才会完整。经由目前物理学家仍不完全了解的过程,中心区域的物质全被挤压成中子时,星球内部的物质随著强大的重力陷向中心,陷落得速度非常快,核区域到表层的温度都高到能产生核融合反应。想想,如果地球上所有氢弹同时爆炸的情景。这可是整个星球都在发生核融合反应,将整个星球炸碎,形成天文学家所说的”超新星爆炸”。超新星爆炸有如烟火一样四射,只是规模大的多,持续得时间也久,整个超新星爆炸有如烟火一般四射,只是规模大的多,持续的时间也久。整个超新星爆炸扩散的过程可以持续数千年至数万年之久,阔至张范围渴达数十光年之远。在银河系中,超新星爆炸是最壮观的事件了。总结来说,质量比太阳大三倍以上的恒星就可能产生超新星爆炸。而炸碎后中心留下一个中子星。中子星主要经由中子构成,直径约为数十公里,密度是水的数千万至一亿倍,真是个异常的星球。

黑洞

质量在六个至八个太阳质量以上的恒星,在演化末期发生超过超新星爆炸时,如果内核区域的质量大於三个太阳质量,则连中子简并压力也抵挡不住强大的重力收缩,物质只好一路收缩下去,目前只有爱因斯坦提出的广义相对论可以解释这种问题。依据理论,物质缩小到约三公里左右,进入一个连光线都无法脱逃的范围,除了总值量,电核自转外,失去的所有的讯息,理问物理学家称这种奇异的状态为”黑洞”。既然黑洞不发光,那麼要如何去发现他勒对於单独的黑洞,物理学家仍想不出好方法,但是如果黑洞是双星系统之一,则可以藉由观测双星的运动来推估看不到的伴星质量,伴星质量超过三个太阳质量而又看不到他,则可能是黑洞了。在双星系统中,如果其中之一是黑洞,则另外一颗恒星在演化晚期膨胀成为超巨星时,膨胀的物质会被黑洞强大的重力吸引,盘旋般向黑洞陷落。在盘旋陷落得过程中,形成一个吸积盘。物质在吸积盘中盘旋陷落得过程中,一路碰

黑洞、白洞以及虫洞。

黑洞、白洞以及虫洞是爱因斯坦爱因斯坦曾经预言宇宙中的三种天体,但是当初不认为黑洞、白洞以及虫洞存在宇宙中,因为黑洞、白洞以及虫洞性质处于极端状态,密度无限大,把时空扭曲了,很难从科学上进行理解,宇宙存在这种类型的天体,连爱因斯坦都不相信黑洞、白洞以及虫洞的存在,后来观测表明,黑洞是有很大可能性存在的。

 

黑洞、白洞以及虫洞都叫做“洞”,实际上不是真正意义上的“洞”,都是天体,时至今日,只发现黑洞,白洞以及虫洞的蛛丝马迹没有发现。天文学家们已经发现了两种类型的黑洞,星系级黑洞与恒星级黑洞,前者质量非常大,是太阳质量的几十万倍左右,甚至几百亿倍,形成原因,没有定论;后者由大质量恒星发生超新星大规模的爆炸所形成的,原始质量大于太阳的质量,晚年发生超新星大规模爆炸时,内部压力和温度会产生小黑洞,吸收恒星的大部分质量,从而形成太阳三倍质量的黑洞,对周围物质的吸收强,黑洞产生后,质量会超过太阳的十倍左右。

如今已经看发现了星系级黑洞和恒星级黑洞,没有发现白洞和虫洞的证据,可能对白洞陌生,黑洞是只进不出的天体,物质只要到达黑洞的视界范围就处于永远无法逃脱的范围了,被吸收体内,除了霍金辐射的辐射量外,不会释放任何物质。

白洞不一样,和黑洞相反,它是只进不出的天体,不吸收物质,而是向外各种物质以及能量,爱因斯坦预言白洞的存在,但是没有白洞在宇宙中的踪影,起初发现类星体时,以为类星体就是白洞,具有极强的光辐射,后来发现不是白洞。

早在19世纪50年代,已有科学家对“虫洞”作过研究,由于当时历史条件所限,一些物理学家认为,理论上也许可以使用“虫洞”,但“虫洞”的引力过大,会毁灭所有进入的东西,因此不可能用在宇宙航行上。

随着科学技术的发展,新的研究发现,“虫洞”的超强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。

据美国华盛顿大学物理系研究人员的计算,“负质量”可以用来控制“虫洞”。他们指出,“负质量”能扩大原本细小的“虫洞”,使它们足以让太空飞船穿过。他们的研究结果引起了各国航天部门的极大兴趣,许多国家已考虑拨款资助“虫洞”研究,希望“虫洞”能实际用在太空航行上。

宇航学家认为,“虫洞”的研究虽然刚刚起步,但是它潜在的回报,不容忽视。科学家认为,如果研究成功,人类可能需要重新估计自己在宇宙中的角色和位置。现在,人类被“困”在地球上,要航行到最近的一个星系,动辄需要数百年时间,是目前人类不可能办到的。但是,未来的太空航行如使用“虫洞”,那么一瞬间就能到达宇宙中遥远的地方。

据科学家猜测,宇宙中充斥着数以百万计的“虫洞”,但很少有直径超过10万公里的,而这个宽度正是太空飞船安全航行的最低要求。“负质量”的发现为利用“虫洞”创造了新的契机,可以使用它去扩大和稳定细小的“虫洞”。

虫洞的概念最初产生于对史瓦西解的研究中。物理学家在分析白洞解的时候,通过一个阿尔伯特•爱因斯坦的思想实验,发现宇宙时空自身可以不是平坦的。如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方与原来的时空垂直。在不平坦的宇宙时空中,这种结构就意味着黑洞视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,就叫做史瓦西喉,它就是一种特定的虫洞。

自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质发生了兴趣。

虫洞连接黑洞和白洞,在黑洞与白洞之间传送物质。在这里,虫洞成为一个阿尔伯特•爱因斯坦—罗森桥,物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞被传送到白洞并且被辐射出去。

虫洞还可以在宇宙的正常时空中显现,成为一个突然出现的超时空管道。

虫洞没有视界,它只有一个和外界的分界面,虫洞通过这个分界面进行超时空连接。虫洞与黑洞、白洞的接口是一个时空管道和两个时空闭合区的连接,在这里时空曲率并不是无限大,因而我们可以安全地通过虫洞,而不被巨大的引力摧毁。理论推出的虫洞还有许多特性,限于篇幅,这里不再赘述。

黑洞、白洞、虫洞仍然是目前宇宙学中“时空与引力篇章”的悬而未解之谜。黑洞是否真实存在,科学家们也只是得到了一些间接的旁证。当前的观测及理论也给天文学和物理学提出了许多新问题,例如,一颗能形成黑洞的冷恒星,当它坍缩时,其密度已然会超过原子核、核子、中子……,如果再继续坍缩下去,中子也可能被压碎。那么,黑洞中的物质基元究竟是什么呢?有什么斥力与引力对抗才使黑洞停留在某一阶段而不再继续坍缩呢?如果没有斥力,那么黑洞将无限地坍缩下去,直到体积无穷小,密度无穷大,内部压力也无穷大,而这却是物理学理论所不允许的。

总之,目前我们对黑洞、白洞和虫洞的本质了解还很少,它们还是神秘的东西,很多问题仍需要进一步探讨。目前天文学家已经间接地找到了黑洞,但白洞、虫洞并未真正发现,还只是一个经常出现在科幻作品中的理论名词。

虫洞也是霍金构想的宇宙期存在的一种极细微的洞穴。美国科学家对此做了深入的研究。目前的宇宙中,“宇宙项”几乎为零。所谓的宇宙项也称为“真空的能量”,在没有物质的空间中,能量也同样存在其内部,这是由爱因斯坦所导入的。宇宙初期的膨胀宇宙,宇宙项是必须的,而且,在基本粒子论里,也认为真空中的能量是自然呈现的。那么,为何目前宇宙的宇宙项变为零呢?柯尔曼说明:在爆炸以前的初期宇宙中,虫洞连接着很多的宇宙,很巧妙地将宇宙项的大小调整为零。结果,由一个宇宙可能产生另一个宇宙,而且,宇宙中也有可能有无数个这种微细的洞穴,它们可通往一个宇宙的过去及未来,或其他的宇宙。

旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。

最后,即使虫洞存在并且是稳定的,穿过它们也是十分不愉快的。当你试着穿越虫洞时,你将被这些X射线和伽玛射线烤焦。虫洞的出现,几乎可以说是和黑洞同时的。

物理学家一直认为,虫洞的引力过大,会毁灭所有进入它的东西,因此不可能用在宇宙旅行之上 。但是,假设宇宙中有虫洞这种物质存在,那么就可以有一种说法:如果你于12:00站在虫洞的一端(入口),那你就会于12:00从虫洞的另一端(出口)出来。

黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的加强,它还是仅仅是一个连通的“宇宙监狱”。

虫洞有几种说法

一是空间的隧道,就像一个球,你要沿球面走就远了但如果你走的是球里的一条直径就近了,虫洞就是直径

二是黑洞与白洞的联系。黑洞可以产生一个势阱,白洞则可以产生一个反势阱。宇宙是三维的,将势阱看作第四维,那么虫洞就是连接势阱和反势阱的第五维。假如画出宇宙、势阱、反势阱和虫洞的图像,它就像一个克莱因瓶——瓶口是黑洞,瓶身和瓶颈的交界处是白洞,瓶颈是虫洞。

三是你说的时间隧道,根据爱因斯坦所说的你可以进行时间旅行,但你只能看,就像看**,却无法改变发生的事情,因为时间是线行的,事件就是一个个珠子已经穿好,你无法改变珠子也无法调动顺序

到现在为止,我们讨论的都是普通“完美”黑洞。细节上,我们讨论的黑洞都不旋转也没有电荷。如果我们考虑黑洞旋转同时/或者带有电荷,事情会变的更复杂。特别的是,你有可能跳进这样的黑洞而不撞到奇点。结果是,旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。

白洞有可能离黑洞十分远;实际上它甚至有可能在一个“不同的宇宙”--那就是,一个时空区域,除了虫洞本身,完全和我们在的区域没有连接。一个位置方便的虫洞会给我们一个方便和快捷的方法去旅行很长一段距离,甚至旅行到另一个宇宙。或许虫洞的出口停在过去,这样你可以通过它而逆着时间旅行。总的来说,它们听起来很酷。

但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。首先,虫洞几乎不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。

在史瓦西发现了史瓦西黑洞以后,理论物理学家们对爱因斯坦常方程的史瓦西解进行了几乎半个世纪的探索。包括上面说过的克尔解、雷斯勒——诺斯特朗姆解以及后来的纽曼解,都是围绕史瓦西的解研究出来的成果。我在这里将介绍给大家的虫洞,也是史瓦西的后代。

虫洞在史瓦西解中第一次出现,是当物理学家们想到了白洞的时候。他们通过一个爱因斯坦的思想实验,发现时空可以不是平坦的,而是弯曲的。在这种情况下,我们会十分的发现,如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方是与原来的时空完全垂直的。在不是平坦的宇宙时空中,这种结构就以为着黑洞的视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,叫史瓦西喉,也就是一种特定的虫洞。

自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质感到好奇。

我们先来看一个虫洞的经典作用:连接黑洞和白洞,成为一个爱因斯坦——罗森桥,将物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞被传送到这个白洞的所在,并且被辐射出去。

当然,前面说的仅仅是虫洞作为一个黑洞和白洞之间传送物质的道路,但是虫洞的作用远不只如此。

黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的将强,它还是仅仅是一个连通的“宇宙监狱”。

虫洞不仅可以作为一个连接洞的工具,它还在宇宙的正常时空中出现,成为一个突然出现在宇宙中的超空间管道。

虫洞没有视界,它有的仅仅是一个和外界的分解面。虫洞通过这个分解面和超空间连接,但是在这里时空曲率不是无限大。就好比在一个在平面中一条曲线和另一条曲线相切,在虫洞的问题中,它就好比是一个四维管道和一个三维的空间相切,在这里时空曲率不是无限大。因而我们现在可以安全地通过虫洞,而不被巨大的引力所摧毁。

爱因斯坦——罗森桥是一个把两个遥远区域连接起来的虫洞,但它们不能保持畅通足够久,以使任何东西通过。在航天飞船穿过虫洞之前它缩小断裂,会形成两个分离的奇点。飞船会撞到奇点上去。

虫洞的性质

利用相对论在不考虑一些量子效应和除引力以外的任何能量的时候,我们得到了一些十分简单、基本的关于虫洞的描述。这些描述十分重要,但是由于我们研究的重要是黑洞,而不是宇宙中的洞,因此我在这里只简单介绍一下虫洞的性质,而对于一些相关的理论以及这些理论的描述,这里先不涉及。

虫洞有些什么性质呢?最主要的一个,是相对论中描述的,用来作为宇宙中的高速火车。但是,虫洞的第二个重要的性质,也就是量子理论告诉我们的东西又明确的告诉我们:虫洞不可能成为一个宇宙的高速火车。虫洞的存在,依赖于一种奇异的性质和物质,而这种奇异的性质,就是负能量。只有负能量才可以维持虫洞的存在,保持虫洞与外界时空的分解面持续打开。当然,狄拉克在芬克尔斯坦参照系的基础上,发现了参照系的选择可以帮助我们更容易或者难地来分析物理问题。同样的,负能量在狄拉克的另一个参照系中,是非常容易实现的,因为能量的表现形式和观测物体的速度有关。这个结论在膜规范理论中同样起到了十分重要的作用。根据参照系的不同,负能量是十分容易实现的。在物体以近光速接近虫洞的时候,在虫洞的周围的能量自然就成为了负的。因而以接近光速的速度可以进入虫洞,而速度离光速太大,那么物体是无论如何也不可能进入虫洞的。这个也就是虫洞的特殊性质之一。

但是虫洞并没有这么太平。前面说的是在安静的相对论中的虫洞,在暴躁的量子理论中,虫洞的性质又有了十分重要的变化。

我们先来看在黑洞中的虫洞,也就是史瓦西喉和奇点周围形成的子宇宙。

黑洞周围的量子真空涨落在黑洞巨大引力的作用下,会被黑洞的引力能“喂”大,成为十分的能量辐射。这种能量会毫不留情地将一切形式的虫洞摧毁。

在没有黑洞包围的虫洞中,由于同样的没有黑洞巨大引力的“喂养”,虫洞本身也不可能开启太久。虫洞有很大几率被随机打开,但是有更大的几率突然消失。虫洞打开的时间十分短,仅仅是几个普朗克时间。在如此短的“寿命”中,即使是光也不可能走完虫洞的一半旅途,而在半路由于虫洞的消失而在整个时空中消失,成为真正的四维时空组旅行者。

而且,在没有物体通过虫洞的时候,虫洞还比较“长寿”,而一旦有物体进入了虫洞,如果这个物体是负能量的,那么还好,虫洞会被撑开;但是如果物体是正能量的,那么虫洞会在自己“自然死亡”以前就“灭亡”掉。而在宇宙中,几乎无时无刻不存在能量辐射通过宇宙的每一个角落,而这些辐射都是正能量的,因此几乎可以肯定,在自然情况下是不存在虫洞的。

旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。

但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。首先,虫洞几乎可以肯定不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。

还有,即使形成了一个虫洞,它也被认为是不稳定的。即使是很小的扰动(包括你尝试穿过它的扰动)都会导致它坍塌。

最后,即使虫洞存在并且是稳定的,穿过它们也是十分不愉快的。贯穿虫洞的辐射(将蓝移到非常高的频率。当你试着穿越虫洞时,你将被这些X射线和伽玛射线烤焦。虫洞的出现,几乎可以说是和黑洞同时的。

虫洞的自然生产机制

虫洞的自然产生机制有两种:

其一,是黑洞的强大引力能;

其二,是克尔黑洞的快速旋转,其伦斯——梯林效应将黑洞周围的能层中的时空撕开一些小口子。这些小口子在引力能和旋转能的作用下被击穿,成为一些十分小的虫洞。这些虫洞在黑洞引力能的作用下,可以确定它们的出口在那里,但是现在还不可能完全完成,因为量子理论和相对论还没有完全结合。

从人类发射第一个航天器以来, 短短二十几年的时间里, 齐奥尔科夫斯基所预言的 “人类首先将小心翼翼地穿过大气层, 然后再去征服太阳周围的整个空间” 就成为了现实, 人类探索星空的步履不可谓不迅速。 但是, 相对于无尽的星空而言, 这种步履依然太过缓慢。 率先飞出太阳系的先驱者十号如今正在一片冷寂的空间中滑行着, 在满天的繁星之中, 要经过多少年它才能飞临下一颗恒星呢? 答案是两百万年! 那时它将飞临距离我们六十八光年的金牛座。 六十八光年的距离相对于地球上的任何尺度来说都是极其巨大的, 但是相对于远在三万光年之外的银河系中心, 远在两百二十万光年之外的仙女座大星云, 远在六千万光年之外的室女座星系团, 以及更为遥远的其它天体来说无疑是微不足道的。 人类的好奇心是没有边界的, 可是即便人类航天器的速度再快上许多倍, 甚至接近物理速度的上限 - 光速, 用星际空间的距离来衡量依然是极其缓慢的。

萨根与索恩的交流不仅为科幻小说带来了一个全新的术语, 也为物理学开创了一个新的研究领域。 在物理学中, 虫洞这一概念最早是由米斯纳与惠勒于一九五七年提出的, 与人类发射第一个航天器恰好是同一年。 那么究竟什么是虫洞? 它又为什么会被科幻小说家视为星际旅行的工具呢? 让我们用一个简单的例子来说明: 大家知道, 在一个苹果的表面上从一个点到另一个点需要走一条弧线, 但如果有一条蛀虫在这两个点之间蛀出了一个虫洞, 通过虫洞就可以在这两个点之间走直线, 这显然要比原先的弧线来得近。 把这个类比从二维的苹果表面推广到三维的物理空间, 就是物理学家们所说的虫洞, 而虫洞可以在两点之间形成快捷路径的特点正是科幻小说家们喜爱虫洞的原因、。 只要存在合适的虫洞, 无论多么遥远的地方都有可能变得近在咫尺, 星际旅行家们将不再受制于空间距离的遥远。 在一些科幻故事中, 技术水平高度发达的文明世界利用虫洞进行星际旅行就像今天的我们利用高速公路在城镇间旅行一样。

不过米斯纳与惠勒所提出的虫洞是极其微小的, 并且在极短的时间内就会消失, 无法成为星际旅行的通道。 萨根的小说发表之后, 索恩对虫洞产生了浓厚的兴趣, 并和他的学生莫里斯开始对虫洞作深入的研究。 与米斯纳和惠勒不同的是, 索恩感兴趣的是可以作为星际旅行通道的虫洞, 这种虫洞被称为可穿越虫洞。

三 负能量物质

那么什么样的虫洞能成为可穿越虫洞呢? 一个首要的条件就是它必须存在足够长的时间, 不能够没等星际旅行家穿越就先消失。 因此可穿越虫洞首先必须是足够稳定的。 一个虫洞怎样才可以稳定存在呢? 索恩和莫里斯经过研究发现了一个不太妙的结果, 那就是在虫洞中必须存在某种能量为负的奇特物质! 为什么会有这样的结论呢? 那是因为物质进入虫洞时是向内汇聚的, 而离开虫洞时则是向外飞散的, 这种由汇聚变成飞散的过程意味着在虫洞的深处存在着某种排斥作用。 由于普通物质的引力只能产生汇聚作用, 只有负能量物质才能够产生这种排斥作用。 因此, 要想让虫洞成为星际旅行的通道, 必须要有负能量的物质。 索恩和莫里斯的这一结果是人们对可穿越虫洞进行研究的起点。

索恩和莫里斯的结果为什么不太妙呢? 因为人们在宏观世界里从未观测到任何负能量的物质。 事实上, 在物理学中人们通常把真空的能量定为零。 所谓真空就是一无所有, 而负能量意味着比一无所有的真空具有 “更少” 的物质, 这在经典物理学中是近乎于自相矛盾的说法。

因此, 种种令人兴奋的研究都表明, 宇宙中看来的确是存在负能量物质的。 但不幸的是, 迄今所知的所有这些负能量物质都是由量子效应产生的, 因而数量极其微小。 以卡什米尔效应为例, 倘若平行板的间距为一米, 它所产生的负能量的密度相当于在每十亿亿立方米的体积内才有一个 (负质量的) 基本粒子! 而且间距越大负能量的密度就越小。 其它量子效应所产生的负能量密度也大致相仿。 因此在任何宏观尺度上由量子效应产生的负能量都是微乎其微的。

另一方面, 物理学家们对维持一个可穿越虫洞所需要的负能量物质的数量也做了估算, 结果发现虫洞的半径越大, 所需要的负能量物质就越多。 具体地说, 为了维持一个半径为一公里的虫洞所需要的负能量物质的数量相当于整个太阳系的质量。

如果说负能量物质的存在给利用虫洞进行星际旅行带来了一丝希望, 那么这些更具体的研究结果则给这种希望泼上了一盆无情的冷水。 因为一方面迄今所知的所有产生负能量物质的效应都是量子效应, 所产生的负能量物质即使用微观尺度来衡量也是极其微小的。 另一方面维持任何宏观意义上的虫洞所需的负能量物质却是一个天文数字! 这两者之间的巨大鸿沟无疑给建造虫洞的前景蒙上了浓重的阴影。

四 探险者的地狱

虽然数字看起来令人沮丧, 但是别忘了当我们讨论虫洞的时候, 我们是在讨论一个科幻的话题。 既然是讨论科幻的话题, 我们姑且把眼光放得乐观些。 即使我们自己没有能力建造虫洞, 或许宇宙间还存在其它文明生物有能力建造虫洞, 就象《星际之门》的故事那样。 甚至, 即使谁也没有能力建造虫洞, 或许在浩瀚宇宙的某个角落里存在着天然的虫洞。 因此让我们姑且假设在未来的某一天人类真的建造或者发现了一个半径为一公里的虫洞。

我们是否就可以利用它来进行星际旅行了呢?

这就是星际探险者试图穿越半径为一公里的虫洞将会遭遇的结局。 半径一公里的虫洞不是旅行家的天堂, 而是探险者的地狱。

因此一个虫洞要成为可穿越虫洞, 一个很明显的进一步要求就是: 飞船及乘员在通过虫洞时所受到的张力必须很小。 计算表明, 这个要求只有在虫洞的半径极其巨大的情况下才能得到满足。 那么究竟要多大的虫洞才可以作为星际旅行的通道呢? 计算表明, 半径小于一光年的虫洞对飞船及乘员产生的张力足以破坏物质的原子结构, 这是任何坚固的飞船都无法经受的, 更遑论脆弱的飞船乘员了。 因此, 一个虫洞要成为可穿越虫洞, 其半径必须远远大于一光年。

五 从科幻到现实

但另一方面, 一光年用日常的距离来衡量虽然是一个巨大的线度, 用星际的距离来衡量, 却也不算惊人。 我们所在的银河系的线度大约是它的十万倍, 假如在银河系与两百二十万光年外的仙女座大星云之间存在一个虫洞的话, 从线度上讲它只不过是一个非常细小的通道。 那么会不会在我们周围的星际空间中真的存在这样的通道, 只不过还未被我们发现呢? 答案是否定的。 因为半径为一光年的虫洞真正惊人的地方不在于它的线度, 而在于维持它所需的负能量物质的数量。 计算表明, 维持这样一个虫洞所需的负能量物质的数量相当于整个银河系中所有发光星体质量总和的一百倍! 这样的虫洞产生的引力效应将远比整个银河系的引力效应更为显著, 如果在我们附近的星际空间中存在这种虫洞的话, 周围几百万光年内的物质运动都将受到显著的影响, 我们早就从它的引力场中发现其踪迹了。

因此不仅在地球上不可能建造可穿越虫洞, 在我们附近的整个星际空间中都几乎不可能存在可穿越虫洞而未被发现。

这样看来, 我们只剩下一种可能性需要讨论了, 那就是在宇宙的其它遥远角落里是否有可能存在可穿越虫洞? 对于这个问题, 我们也许永远都无法确切地知道结果, 因为宇宙实在太大了。 但是维持可观测虫洞所需的数量近乎于天方夜谭的负能量物质几乎为我们提供了答案。 迄今为止, 人类从未在任何宏观尺度上发现过负能量物质, 所有产生负能量物质的实验方法利用的都是微弱的量子效应。 为了能够维持一个可穿越虫洞, 必须存在某种机制把量子效应所产生的微弱的负能量物质汇集起来, 达到足够的数量。 但是负能量物质可以被汇聚起来吗? 最近十几年来物理学家们在这方面做了一些理论研究, 结果表明由量子效应产生的负能量物质是不可能无限制地加以汇聚的。 负能量物质汇聚得越多, 它所能够存在的时间就会越短。 因此一个虫洞没有负能量物质是不稳定的, 负能量物质太多了也会不稳定! 那么到底什么样的虫洞才能够稳定的呢? 初步的计算表明, 只有线度比原子的线度还要小二十几个数量级的虫洞才是稳定的[注七]!

这一系列结果无疑是非常冷酷的, 如果这些结果成立的话, 存在可穿越虫洞的可能性就基本上被排除了, 所有那些美丽的科幻故事也就都成了镜花水月。 不过幸运 (或不幸) 的是, 上面所叙述的许多结果依据的是目前还比较前沿 - 因而相对来说也还比较不成熟 - 的物理理论。 未来的研究是否会从根本上动摇这些理论, 从而完全推翻我们上面介绍的许多结果, 还是一个未知数。 退一步讲, 即使那些物理理论基本成立, 上面所叙述的许多结果也只是从那些理论推出的近似结果或特例。 比方说, 许多结果假定了虫洞是球对称的, 而实际上虫洞完全可以是其它形状的, 不同形状的虫洞所要求的负能量物质的数量, 所产生张力的大小都是不同的。 所有这些都表明即使那些物理理论真的成立, 我们上面提到的结论也不见得是完全

打开它的方法就是共鸣利用物质间相互吸引原理使两时空虫洞正反两种物质能量互相吸引从而打开它,但这两种能量是光能量与暗能量

什么是时间?时间的本质?

时间随宇宙的变化而变。时间是因变量。——时间的本质,Deng's时间公式

t=T(U,S,X,Y,Z)

U-宇宙;S空间,XYZ,事件,顺序

时间是宇宙事件秩序的计量。时间的本质

什么是时间?时间是宇宙事件顺序的度量。

时间不是自变量,而是因变量,它是随宇宙的变化而变化。

t=(S1,S2,S3,,Sn)

Deng's时间公式:世界事件发生次序的序列。其中,S是事件,S1,S2,S3,,Sn是事件1,2,3,,n发生的顺序,时间就是对这些事件发生顺序的排序,标志的计量。

时间”是一个计量“事件过程的长短、次序”的“类别名词”。

可以说没有了“事件”,也就没有了时间(您可以试着举出没有事件还有时间的例子)

时间是人类用以描述物质运动过程或事件发生过程的一个参数,确定时间,是靠不受外界影响的物质周期变化的规律。例如月球绕地球周期,地球绕太阳周期,地球自转周期,原子震荡周期等。

时间在数学、物理上用坐标轴表示。“时间”时会出现什么状况?怎样利用时间的本质来思考“衰老”的问题?下面开始细致的分析,内容包括:为什么有些“事件”可以“同时发生”,有些却不能?

AC+ 70 8247 白矮星

Sirius B 天狼星B 大犬座αB

Van Maanen 范马南星 最近的单白矮星

Procyon B 南河三B 小犬座αB

Epsilon Indi Ba 波斯七Ba 印第安座εBa

Epsilon Indi Bb 波斯七Bb 印第安座εBb

EBLM J0555-57Ab 绘架座的主序红矮星 已知最小恒星

2MASS J0523-1403 天兔座的主序红矮星 已知质量最小恒星

SCR 1845-6357A 孔雀座的主序红矮星

DX Cancri/Gliese 1111 巨蟹座DX/格利泽1111

OGLE-TR-122B 船底座的主序红矮星 2012年是最小恒星

Teegarden’s star 第加登星

Gliese 412 A 格利泽412 A

Luyten 726-8 B(UV Ceti) 鲁坦726-8 B(鲸鱼座UV)

Luyten 726-8 A(BL Ceti) 鲁坦726-8 A(鲸鱼座BL)

NY Virginis 室女座NY B型次矮星

Proxima/Rigil Kent C 比邻 南门二C 半人马座αC 距地最近恒星

Ross 248(HH Andromeda) 罗斯248(仙女座HH)

Wolf 359(CN Leonis) 沃尔夫359(狮子座CN)

Groombridge 34 B 格鲁姆布里奇34 B

Banard’s star 巴纳德星

Kepler-70 开普勒 70 天鹅座的B型次矮星

Ross 128(FI Virgo) 罗斯128(室女座FI)

V391 Pegasi 飞马座V391 B型次矮星

Kruger 60 B 克鲁格60 B

Ross 154(V1216 Sagittarius) 罗斯154(人马座V1216)

Struve 2398 B 斯特鲁威 2398 B

Kapteyn’s star(VZ Pictoris) 卡普坦星(绘架座VZ)

Luyten’s star 鲁坦星

Kruger 60 A 克鲁格60 A

Struve 2398 A 斯特鲁威2398 A

Groombridge 34 A 格鲁姆布里奇34 A

Gliese 412 B 格利泽412 B

AD Leonis 狮子座AD 542496

WR-102 沃尔夫-拉叶星 已知最热恒星 温度210000K

Lalande 21185(Gliese 411) 拉朗德21185(格利泽411)

WR-142 沃尔夫-拉叶星 温度200000K

Lacaille 9352 拉塞勒9352 638476 M05V 10742 ly 734

Lacaille 8760 拉塞勒8760 最亮的红矮星 709418 M 1287 ly 668

WR-93 B 沃尔夫-拉叶星 温度160000K

61 Cygni B 天津增二十九B 天鹅座61B

Groombridge 1618 格鲁姆布里奇1618

Denebokab B 右旗三B 天鹰座δB

Gamma Leporis B 厕三B 天兔座γB

61 Cygni A 天津增二十九A 天鹅座61A

Beta Libra B 氐宿四B 天枰座βB

Epsilon Eridanis 天苑四 波江座ε

Epsilon Indi A 波斯七A 印第安座εA

Mintaka B 参宿三B 猎户座δB

Tau Ceti 天仓五 鲸鱼座τ

Rigil Kent B 南门二B 半人马座αB

WR-2(HIP 5100) 仙后座的沃尔夫-拉叶星 温度141000K

36 Ophiuchi 天江二 蛇夫座36

Sun 太阳

OGLE-TR-122A 主序黄矮星

Zeta Tucanae 鸟喙六 杜鹃座ζ

HD 1461 天仓增十九

Beta Comae Berenices 周鼎一 后发座β 后发座最亮星

Chara 常陈四 猎犬座β

Pi Mensae 山案座π

#3 Rigel Kent A 南门二A 半人马座αA 半人马座最亮星

Delta Equulei B 司非二B 小马座δB

Delta Equulei A 司非二A 小马座δA 小马座第二亮星

Gamma Leporis A 厕三A 天兔座γA

Rho Corona Borealis 贯索九 北冕座ρ

WR-1 沃尔夫-拉叶星 温度70000K

Tabit 参旗六 猎户座π3

Megrez 天权 北斗四 大熊座δ 大熊座第十一亮星

HD 56925 沃尔夫-拉叶星 温度112000K

HD 49798 船尾座的O型次矮星

Zeta Leporis 厕增七 天兔座ζ

Alpha Caelum 近天园增六 雕具座α 雕具座最亮星

#12 Altair 牛郎星 天鹰座α 天鹰座最亮星 夏季大三角之一

#1 Sirius A 天狼星A 大犬座αA 大犬座最亮星 冬季大三角之一

Denebola 五帝座一 狮子座β 狮子座第三亮星 春季大三角之一

Algol Ab 大陵五Ab 英仙座βAb

Mu Herculis 九河 天市左垣三 武仙座μ

Denebokab A 右旗三A 天鹰座δA

Beta Hydri 蛇尾一 水蛇座β 水蛇座最亮星

Kepler-2 开普勒 2 主序黄矮星

#18 Fomalhaut 北落师门 南鱼座α 南鱼座最亮星

Kepler-7 开普勒 7 天琴座的主序黄矮星

52 Orionis 参宿增十七 猎户座52

AB8 沃尔夫-拉叶星 温度141000K

Gamma Trianguli 天大将军十 三角座γ

Beta Leonis Minoris B 势增四B 小狮座31B

#8 Procyon A 南河三A 小犬座αA 小犬座最亮星 冬季大三角之一

Alpha Fornacis 天苑增三 天炉座α 天炉座最亮星

Beta Piscis Austrini 败臼增一 南鱼座β

WR-46 沃尔夫-拉叶星 温度112000K

Zosma 西上相 太微右垣五 狮子座δ 狮子座第五亮星

Alpha Lacertae 螣蛇一 蝎虎座α 蝎虎座最亮星

Alderamin 天钩五 仙王座α 仙王座最亮星

Alpha Chamaeleontis 小斗增一 蝘蜓座α 蝘蜓座最亮星

CO Camelopardalis 大理一 鹿豹座CO

Nu2 Canis Majoris 野鸡 大犬座ν2

Rana 天苑三 波江座δ

#4 Vega 织女星 天琴座α 天琴座最亮星 夏季大三角之一

Skat 羽林军二十六 宝瓶座δ

Cor Caroli 常陈一 猎犬座α 猎犬座最亮星

Rukbat 天渊三 人马座α 人马座第十六亮星

Kappa1 Tauri 天街一 金牛座κ1

Delta Sagitta B 左旗三B 天箭座δB

Gamma Microscopii 璃瑜增一 显微镜座γ 显微镜座最亮星

EZ Canis Majoris 大犬座EZ 沃尔夫-拉叶星 温度85000K

Eta Crateris 翼宿六 巨爵座η

Algol Aa1 大陵五Aa1 英仙座βAa1 英仙座第二亮星

Lambda Geminorum 井宿八 双子座λ

Muphrid 右摄提一 牧夫座η

Markab 壁宿一 飞马座α 飞马座第三亮星

Omega Fornacis 天庾二 天炉座ω

Terebellum 狗国一 人马座ω

18 Tauri 昴宿增八 金牛座18

Gemma 贯索四 北冕座α 北冕座最亮星

Mothallah 娄宿增六 三角座α 三角座第二亮星

Alshain 河鼓一 天鹰座β

Merak 天璇 北斗二 大熊座β 大熊座第五亮星

Phecda 天玑 北斗三 大熊座γ 大熊座第六亮星

Alpha Hydri 蛇首一 水蛇座α 水蛇座第二亮星

#21 Regulus 轩辕十四 狮子座α 狮子座最亮星

Pleione 昴宿增十二 金牛座28

Mahasim 柱三 御夫座η

V5097 Sagittarius(WR-104)人马座V5097 沃尔夫-拉叶星

Rho Aurigae 咸池一 御夫座ρ

WR-136 沃尔夫-拉叶星 温度70800K

44 Tauri 砺石二 金牛座44

#38 Alkaid 摇光 北斗七 大熊座η 大熊座第三亮星

Thuban 右枢 紫薇右垣一 天龙座α 天龙座第八亮星 曾经的北极星

#30 Alnair 鹤一 天鹤座α 天鹤座最亮星

AB7 沃尔夫-拉叶星 温度105000K

Gomeisa 南河二 小犬座β 小犬座第二亮星

Spica B 角宿一B 室女座αB

Beta Pavonis 孔雀七 孔雀座β 孔雀座第二亮星

Alpha Telesopii 鳖一 望远镜座α 望远镜座最亮星

23 Tauri 昴宿五 金牛座23

Homam 雷电一 飞马座ζ

Sigma Octantis 南极星 南极座σ

Beta Libra A 氐宿四A 天枰座βA 天枰座最亮星

#31 Alioth 玉衡 北斗五 大熊座ε 大熊座最亮星

Celaeno 昴宿增九 金牛座16

Algenib 壁宿一 飞马座γ 飞马座第四亮星

#49 Nunki 斗宿四 人马座σ 人马座第二亮星

Delta Cygni 天津二 天鹅座δ

24 Sextans 天相增八 六分仪座24

Errai 少卫增八 仙王座γ 仙王座第二亮星

6 Lyncis 八谷增二十八 天猫座6

Antares B 心宿二B 天蝎座αB

WR-134 沃尔夫-拉叶星 温度63100K

Al Thalimain 右旗五 天鹰座ι

Zeta Tauri 天关 金牛座ζ 金牛座第四亮星

Lambda Tauri B 毕宿八B 金牛座λB

#44 Alpha Pavonis 孔雀十一 孔雀座α 孔雀座最亮星

Muliphein 天狼增四 大犬座γ

Sigma Orionis 参宿增一 猎户座σ

Mintaka C(HD 36485) 参宿三C 猎户座δC

TU Muscae B 苍蝇座TU B

#26 Bellatrix 参宿五 猎户座γ 猎户座第三亮星

Gamma Trianguli Australis 三角形一 南三角座γ 南三角座第三亮星

Eta Serpantis 东海 天市左垣八 巨蛇座η

Alfirk 上卫增一 仙王座β 仙王座第三亮星

Kappa Canis Majoris 弧矢八 大犬座κ

Nu Octantis 蛇尾三 南极座ν 南极座最亮星

Subra 轩辕十五 狮子座o

Epsilon Cassiopeiae 阁道二 仙后座ε 仙后座第五亮星

Alnyata 心宿三 天蝎座τ

Gamma Herculis 河间 天市右垣二 武仙座γ

Maia 昴宿四 金牛座20

Electra 昴宿一 金牛座17

Aldhibah 上弼 紫薇左垣四 天龙座ζ

Phact 丈人一 天鸽座α 天鸽座最亮星

Alpha Pyxidis 天狗五 罗盘座α

Mintaka Aa2 参宿三Aa2 猎户座δAa2

Lambda Tauri A 毕宿八A 金牛座λA

Omicron Andromeda 车府增十六 仙女座ο

Jabhat al Arkab 钩钤一 天蝎座ω1

#35 Kaus Australis 箕宿三 人马座ε 人马座最亮星

Pipirima 尾宿增二 天蝎座μ2

Thabit 参宿增三十六 猎户座υ

TU Muscae A 苍蝇座TU A

Iritjinga 马尾三 半人马座δ 半人马座第六亮星

Alnitak Ab 参宿一Ab 猎户座ζAb

#9 Achernar 水委一 波江座α 波江座最亮星

AE Aurigae 御夫座AE

#16 Spica A 角宿一A 室女座αA 室女座最亮星 春季大三角之一

Yildun 勾陈二 小熊座δ

Epsilon Persei 卷舌二 英仙座ε

Beta Leonis Minoris A 势增四A 小狮座31A 小狮座第二亮星

Ahfa al Farkadain 勾陈四 小熊座ζ

Praecipua 势四 小狮座46 小狮座最亮星

10 Lacertae 车府增十一 蝎虎座10

Hatsya 伐三 猎户座ι 猎户座第八亮星

#20 Mimosa 十字架三 南十字座β 南十字座第二亮星

Han 韩 天市右垣十一 蛇夫座ζ 蛇夫座第三亮星

#25 Shuala 尾宿八 天蝎座λ 天蝎座第二亮星

#17 Pollux 北河三 双子座β 双子座最亮星

Capella Ab 五车二Ab 御夫座αAb

Alniyat B 心宿一B 天蝎座σB

Misam 大陵四 英仙座κ

Epsilon Andromeda 奎宿四 仙女座ε

Gienah 天津九 天鹅座ε 天鹅座第三亮星

Kitalpha 虚宿二 小马座α 小马座最亮星

66 Ursae Majoris 天理三 大熊座66

Psi Persei 天大将军二 英仙座ψ

#44 Mirzam 军市一 大犬座β

S Monocerotis 四渎增一 麒麟座S

Alcyone 昴宿六 金牛座η 昴宿星团最亮星 金牛座第三亮星

Algieba B 轩辕十二B 狮子座γB

Lambda Orionis 觜宿一 猎户座λ

Princeps 七公七 牧夫座δ

Alpha Monocerotis 阙丘增七 麒麟座α 麒麟座第二亮星

HD 91190/HR 4126 阴德一

Mintaka Ab 参宿三Ab 猎户座δAb

Veritate 螣蛇增九 仙女座14

Menkent 库楼三 半人马座θ 半人马座第三亮星

Epsilon Virginis 东次将 太微左垣四 室女座ε 室女座第三亮星

Theta2 Orionis 伐二 猎户座θ2

BI 253 沃尔夫-拉叶星 84SM

Beta Lacertae 螣蛇十 蝎虎座β 蝎虎座第四亮星

Altais 天厨一 天龙座δ

Kappa Ophiuchi 斛二 蛇夫座κ

Deneb el Okab 吴越增一 天鹰座ε

Beta Fornacis 天庾三 天炉座β 天炉座第二亮星

Wazn 子二 天鸽座β 天鸽座第二亮星

Gamma Comae Berenices 郎位一 后发座γ 后发座第三亮星

#6 Capella Aa 五车二Aa 御夫座αAa 御夫座最亮星

Ancha 泣二 宝瓶座θ

Unukalhai 蜀 天市右垣七 巨蛇座α 巨蛇座最亮星

Krzeminski’s star(Centaurus X-3) 卡日米西星(半人马座X-3)

Cebalrai 宗正一 蛇夫座β 蛇夫座第五亮星

Larawag 尾宿二 天蝎座ε

Ain 毕宿一 金牛座ε

Gamma Hydra 平一 长蛇座γ

#11 Hadar/Agena 马腹一 半人马座β 半人马座第二亮星

HD 93129 B 船底座的主序星

VV Cephei B 仙王座VV B

Situla 虚梁三 宝瓶座κ

Gamma Tauri 毕宿四 金牛座γ

Delta Andromeda 奎宿五 仙女座δ

Naos 弧矢增二十二 船尾座ζ 船尾座最亮星

Sinstra 燕,天市左垣九 蛇夫座v

Eta Carinae B 海山二B 船底座ηB

Hamal 娄宿三 白羊座α 白羊座最亮星

Ankaa 火鸟六 凤凰座α 凤凰座最亮星

Zeta Cygni 天津八 天鹅座ζ

Pkerkad 太子 北极一 小熊座γ

Sulafat 渐台三 天琴座γ 天琴座第二亮星

Kraz 轸宿四 乌鸦座β

Mintaka Aa1 参宿三Aa1 猎户座δAa1

Alniyat A 心宿一A 天蝎座σA

#34 Regor 天社一 船帆座γ2

19 Cephei 天钩增十一 仙王座19

#32 Dubhe 天枢 大熊座α

HIP 82691 御夫座的蓝巨星

60 Sagittarius 狗国二 人马座60

46 Ceti 天仓增十五 鲸鱼座46

Alnitak Aa 参宿一Aa 猎户座ζAa

Atik/Mekhib 卷舌四 英仙座ζ 英仙座第三亮星

Tau Phoenix 凤凰座τ

Nekkar 七公增五 牧夫座β

Saiph 参宿六 猎户座κ

Upsilon Virginis 亢宿增十二 室女座υ

#47 Algieba A 轩辕十二A 狮子座γA 狮子座第二亮星

Gamma Arae 龟二 天坛座γ

Beta Pyxidis 天狗四 罗盘座β

Pherkad Minor 天床增二 小熊座11

Delta Octantis 异雀五 南极座δ 南极座第三亮星

#4 Arcturus 大角星 牧夫座α 牧夫座最亮星 春季大三角之一

Alpherg 右更二 双鱼座η 双鱼座最亮星

#40 Sargas 尾宿五 天蝎座θ

Tau Geminorum 五诸侯二 双子座τ

Lambda Pegasi 离宫一 飞马座λ

15 Sagitta 左旗增二十七 天箭座15

Alpha Camelopardalis 少卫 紫薇右垣六 鹿豹座α

Theta Canis Majoris 天狼增二 大犬座θ

#29 Alnilam 参宿二 猎户座ε

Ginan 十字架增一 南十字座ε 南十字座第五亮星

Izar 梗河一 牧夫座ε 牧夫座第二亮星

Edasich 左枢 紫薇左垣一 天龙座ι

Psi4 Aurigae 座旗三 牧夫座ψ4

Epsilon Arae 龟一 天坛座ε

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/2012407.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-15
下一篇2023-11-15

发表评论

登录后才能评论

评论列表(0条)

    保存