12星座天文知识

12星座天文知识,第1张

 十二星座指原来的黄道所经过的12个星座,广泛应用于占星学。十二星座占星学和天文学是有区别的,占星学十二星座依然如故,不包含新加入的蛇夫座。下面就让我带你一起来看看十二星座的天文知识情况怎样。

十二星座天文知识

 日期

 白羊座:每年3月21日~4月20日

 金牛座:每年4月21日~5月20日

 双子座:每年5月21日~6月21日

 巨蟹座:每年6月22日~7月22日

 狮子座:每年7月23日~8月22日

 处女座:每年8月23日~9月22日

 天秤座:每年9月23日~10月23日

 天蝎座:每年10月24日~11月22日

 射手座:每年11月23日~12月21日

 摩羯座:当年12月22日~次年1月19日

 宝瓶座:每年1月20日~2月18日

 双鱼座:每年2月19日~3月20日

 白羊座

 白羊座[Aries],白羊座守护神:希腊—战神阿瑞斯,罗马—战神马斯。白羊座(符号:♈)是黄道星座第一。

 白羊座虽然不引人注目,但在古希腊很著名,因为古代春分点就位于白羊座。由于岁差的关系,春分点已经移到双鱼座。白羊座在日本被称为牡羊座(おひつじ座),受其影响,在中国及华人地区也存在牡羊座这个名字。

 金牛座

 金牛座[Taurus],金牛座守护神:希腊—爱神维纳斯,罗马—爱神维纳斯。金牛座(符号:♉)是黄道星座第二。

 金牛座面积79725平方度,占全天面积的1933%,在全天88个星座中,面积排行第十七。金牛座中亮于55等的恒星有98颗,最亮星为毕宿五(金牛座α),视星等为085。每年11月30日子夜金牛座中心经过上中天。金牛座也是著名的黄道十二星座之一,而毕宿五就位于黄道附近,它和同样处在黄道附近的狮子座的轩辕十四、天蝎座的心宿二、南鱼座的北落师门等四颗亮星,在天球上各相差大约90°,正好每个季节一颗,它们被合称为黄道带的“四大天王”。

 双子座

 双子座[Gemini],双子座守护神:希腊—传讯之神汉密斯,罗马—墨格利。双子座(符号:♊)是黄道带星座第三。

 双子座面积51376平方度,占全天面积的1245%,在全天88个星座中,面积排行第三十位。双子座中亮于55等的恒星有47颗,最亮星为北河三(双子座β),视星等为114。每年1月5日子夜双子座中心经过上中天。纬度变化位于+90°和60°之间可全见。

 巨蟹座

 巨蟹座[Cancer],巨蟹座守护神:希腊-狩猎与守护之神阿尔特密斯,罗马-保护之神狄安娜。巨蟹座(符号:♋)是黄道带星座第四。

 巨蟹座面积50587平方度,占全天面积的1226%。巨蟹座中亮于55等的恒星有23颗,最亮星为柳宿增十(巨蟹座β),视星等为352。每年1月30日子夜巨蟹座中心经过上中天。巨蟹座位于双子座和狮子座之间、北方是天猫座、南面则是小犬座和长蛇座,是一个暗淡细小的星座,没有亮于3等的恒星。中心位置:赤经8时10分,赤纬20度。

 狮子座

 狮子座[Leo]狮子座守护神:希腊-太阳神阿波罗,罗马-太阳神阿波罗狮子座(符号:♌)是黄道带星座第五。

 狮子座面积94696平方度,占全天面积的2296%,在全天88个星座中,面积排行第十二位。狮子座中亮于55等的恒星有52颗,最亮星为轩辕十四(狮子座α),视星等为135。每年3月1日子夜狮子座中心经过上中天。

 处女座

 处女座[Virgo],处女座守护神:希腊-工业与商业之神赫尔墨斯,罗马-赫尔墨斯。处女座(符号:♍)是黄道带星座第六。

 处女座在每年的春季太阳落山不久,它就出现在东方的地平线上,在春夏两季的夜空中室女座一直吐放着它的光芒。在全天88个星座中,它是仅次于长蛇座的大星座,室女座的位置很重要,黄道和天赤道的交点之一——秋分点就在处女座中,就是说,黄道和天赤道都穿过处女座。纬度变化位于+80°和−80°之间可全见。

 天秤座

 天秤座[Libra]天秤座守护神:希腊-美神阿弗罗蒂忒,罗马-美神阿弗罗蒂忒。天秤座(符号:♎)是黄道带座第七。有时也译作“天平座”。

 天秤座位于室女座的东南方向,也属于黄道星座。星座中最亮的四颗

 3m星α、β、γ、σ组成了一个四边形,其中的β星又和春季大三角构成了一个大的菱形,就可以找到这个星座了。纬度变化位于+65°和−90°之间可全见。

 天蝎座

 天蝎座[Scorpius]天蝎座守护神:希腊-冥王哈迪斯,罗马-死亡与轮回之神黑底斯。天蝎座(符号:♏)是黄道带星座第八。

 天蝎座位于南半球,在西面的天秤座与东面的人马座之间,是一个

 接近银河中心的大星座。纬度变化位于+40°和−90°之间可全见。天蝎座是夏天最显眼的星座,它里面亮星云集,光是亮于4m的星就有20多颗。天蝎座又大亮星又多,简直可以说是夏夜星座的代表。再加上它也是黄道星座,所以格外引人注目。不过,天蝎座只在黄道上占据了短短7°的范围,是十二个星座中黄道经过最短的一个。

 射手座

 射手座[Sagittarius],射手座守护神:希腊-宇宙与人类之神宙斯,罗马-众神之神朱彼斯。射手座(符号:♐)是黄道带星座第九。是一个南天黄道带星座。

 射手座面积86743平方度,占全天面积的2103%,在全天88个星座中,面积排行第十五。射手座中亮于55等的恒星有65颗,最亮星为箕宿三(人马座ε),视星等为185。每年7月7日子夜射手座中心经过上中天。

 人马座在日本被称为射手座(いて座,“射手座”是从拉丁语意译而来,sagittarius一词中意为“持箭者”,箭的拉丁语是sagitta,天箭座即Sagitta;相似情况也可以对比拉丁语中的水aqua与持水者aquarius,宝瓶座/水瓶座即Aquarius),受其影响,在大中华地区也存在“射手座”这个非正式名称,根据希腊神话,这位“射手”是半人马族的智者喀戎,因此中国称为人马座。

 摩羯座

 摩羯座[Capricorn],摩羯座守护神:希腊-时间与破坏之神克罗诺斯,罗马-魔神萨登。摩羯座(符号:♑)是黄道带星座第十。

 摩羯座别名山羊座,纬度变化位于+60°和90°之间可全见。是黄道十二星座之一,面积41395平方度,占全天面积的1003%,在全天88个星座中,面积排行第四十位。摩羯座中亮于55等的恒星有31颗,最亮星为垒壁阵四(摩羯座δ),视星等为281。每年8月8日子夜摩羯座中心经过上中天。摩羯座组成一个倒三角形结构,在黑暗的夜晚很容易辨别。对于天文爱好者来说,摩羯座没有多少有趣的星体,这个区域的星系都很微弱不显著。摩羯座有一个梅西耶天体球状星团M30。这个南天星座尽管没有一颗亮星,但轮廓相当清楚。但有时会看不见。

 宝瓶座

 宝瓶座[Aquarius],宝瓶座守护神:希腊-智慧女神雅典娜,罗马-变数之神乌拉诺斯。宝瓶座(符号:♒)是黄道带星座第十一。

 宝瓶座面积97985平方度,占全天面积的2375%,在全天88个星座中,面积排行第十位。宝瓶座中亮于55等的恒星有56颗,最亮星为虚宿一(宝瓶座β),视星等为290。每年8月25日子夜宝瓶座中心经过上中天。宝瓶座是一个大但暗的星座,位于黄道带摩羯座与双鱼座之间,东北面是飞马座、小马座、海豚座和天鹰座,西南边是南鱼座、玉夫座和鲸鱼座。宝瓶座在日本被称为水瓶座(みずがめ座),受其影响,在大中华地区也存在“水瓶座”这个非正式名称。

 双鱼座

 双鱼座[Pisces],双鱼座守护神:希腊-海洋与贪婪之神波塞东,海神尼普琴。双鱼座(符号:♓)是黄道带星座最后一个。

赫尔卡星、海洋星、克洛斯星、火山星、云霄星、双子阿尔法星、双子贝塔星、塞西利亚星、拜伦号、露西欧星、斯诺星、卡酷星、格朗德星

尼古尔星、塔克星、艾迪星、斯科尔星、普雷空间站、哈莫星、推特星、诺可撒斯星、米斯特瑞星、索伦森星、普罗特星、天蛇星

比格星、陨石地带、空间补给站、拓梯星、戴斯星、墨杜萨星、海兹尔星、拉铂尔星、菲尔纳星、般若星

怀特星、麦兹星、格雷斯星、SUN星、果然星、未来星、Y星、异能星、希尔星、泰若星、提尔瑞斯星、神火星

巨石星、艾伦星、巴斯星、莱恩纳斯、幻影星、恶魔星、魔神星、南瓜星、天马星、帕索尔星

创世星、永恒星、棱石星、暗婆罗星、迷幻星云、天魔星、魔灵星

编辑于 2019-12-23

查看全部16个回答

8条评论

帝释天7908

你这听着咋那么熟悉呢!赛尔号?

查看全部8条评论

— 你看完啦,以下内容更有趣 —

宇宙中星球的名称

太阳 月亮 木星 金星 火星 水星 土星 天王星 海王星 冥王星 地球 比邻星 哈勃彗星 天狼星 牛郎星 织女星 谷神星 太阳系外的天体都是有名字的,如果讲比较亮恒星,就是星座名字加希腊字母。 比如“小熊座α星”,就是北极星。所有星座的星星根据亮度,按照希腊字母顺序排序命名,很多都是编号的,没有名字 梅西耶星云星团表 [编辑本段] 编号 NGC 赤经 赤纬 视径 光度 距离 星座 注释 (名称) 2000 2000 (星等) M1 NGC1952 5h 345m +22 01' 36x34' 84 金牛座 蟹状星云 M2 NGC7089 21h 335m - 0 49' 13 65 宝瓶座 球状星团 M3 NGC5272 13h 425m +28 23' 16 64 猎犬座 球状星团 M4 NGC6121 16h 236m -26 32' 26 59 天蝎座 球状星团 M5 NGC5904 15h 186m + 2 05' 17 58 巨蛇座 球状星团 M6 NGC6405 17h 401m -32 13' 15 42 天蝎座 疏散星团 M7 NGC6475 17h 539m -34 49' 80 33 天蝎座 疏散星团 M8 NGC6523 18h 038m -24 23' 90x40 58 人马座 弥漫星云 M9 NGC6333 17h 192m -18 31' 9 79 蛇夫座 球状星团 M10 NGC6254 16h 571m -4 06' 15 66 蛇夫座 球状星团 M11 NGC6705 18h 511m -6 16' 14 58 盾牌座 疏散星团 M12 NGC6218 16h 472m -1 57' 15 66 蛇夫座 球状星团 M13 NGC6205 16h 417m +36 28' 17 59 武仙座 球状星团 M14 NGC6402 17h 376m -3 15' 12 76 蛇夫座 球状星团 M15 NGC7078 21h 300m +12 10' 12 54 飞马座 球状星团 M16 NGC6611 18h 188m -13 47' 35 60 巨蛇座 弥漫星云 M17 NGC6618 18h 208m -16 11' 46x37 70 人马座 弥漫星云 M18 NGC6613 18h 199m -17 08' 9 69 人马座 疏散星团 M19 NGC6273 17h 026m -26 16' 14 72 蛇夫座 球状星团 M20 NGC6514 18h 023m -23 02' 29x27 63 人马座 三叶星云 M21 NGC6531 18h 046m -22 30' 13 59 人马座 疏散星团 M22 NGC6656 18h 364m -23 54' 24 51 人马座 球状星团 M23 NGC6494 17h 568m -19 01' 27 55 人马座 疏散星团 M24 NGC6603 18h 184m -18 25' 90 45 人马座 疏散星团 银河补丁 M25 IC4725 18h 316m -19 15' 32 46 人马座 疏散星团 M26 NGC6694 18h 452m -9 24' 15 80 盾牌座 疏散星团 M27 NGC6853 19h 596m +22 43' 8x4 81 狐狸座 行星状星云 哑铃星云 M28 NGC6626 18h 245m -24 52' 11 69 人马座 球状星团 M29 NGC6913 20h 239m +38 32' 7 66 天鹅座 疏散星团 M30 NGC7099 21h 404m -23 11' 11 75 魔羯座 球状星团 M31 NGC224 0h 427m +41 16' 178x63' 34 仙女座 旋涡星系仙女星系 M32 NGC221 0h 427m +40 52' 8x6 82 仙女座 星系 M33 NGC598 1h 339m +30 39' 62x39 57 三角座 旋涡星系 三角座星系 M34 NGC1039 2h 420m +42 47' 35 52 英仙座 疏散星团 M35 NGC2168 6h 089m +24 20' 28 51 双子座 疏散星团 M36 NGC1960 5h 361m +34 08` 12 60 御夫座 疏散星团 M37 NGC2099 5h 524m -32 33' 24 56 御夫座 疏散星团 M38 NGC1912 5h 287m +35 50' 21 64 御夫座 疏散星团 M39 NGC7092 21h 322m +48 26' 32 46 天鹅座 疏散星团 M40 Winnecke4 12h 224m +58 05' — 80 大熊座 双星 两颗恒星相距50'' M41 NGC2287 6h 470m -20 44' 38 45 大犬座 疏散星团 M42 NGC1976 5h 354m -5 27` 66X60 4 猎户座 最亮的星云(猎户座大星云) M43 NGC1982 5h 356m -5 16' 20X15 9 猎户座 弥漫星云 猎户座大星云东北部 M44 NGC2632 8h 401m +19 59' 95 31 巨蟹座 疏散星团 蜂巢星团(鬼星团) M45 Mel22 3h 470m +24 07' 110 12 金牛座 昴星团 M46 NGC2437 7h 418m -14 49' 27 61 船尾座 疏散星团 M47 NGC2422 7h 366m -14 30' 30 44 船尾座 疏散星团 M48 NGC2548 8h 138m -5 48' 54 58 长蛇座 疏散星团 M49 NGC4472 12h 298m +8 00' 9x7 84 室女座 星系 M50 NGC2323 7h 032m +8 20' 16 59 麒麟座 疏散星团 M51 5194-5 13h 299M +47 12' 11X8 81 猎犬座 漩涡星系(猎犬座星系) M52 NGC7654 23h 242m +61 35` 13 69 仙后座 疏散星团 M53 NGC5024 13h 129m +18 10' 13 77 后发座 球状星团 M54 NGC6715 18h 551M -30 29' 9 77 人马座 球状星团 M55 NGC6809 19h 400m -30 58' 19 70 人马座 球状星团 M56 NGC6779 19h 166m +30 11' 7 82 天琴座 球状星团 M57 NGC6720 18h 536m +33 02' 14x10 90 天琴座 行星状星云 M58 NGC4579 12h 377m +11 49' 5x4 98 室女座 星系 M59 NGC4621 12h 420m +11 39' 5x3 98 室女座 椭圆星系 M60 NGC4649 12h 437m +11 33' 7x6 88 室女座 椭圆星系 M61 NGC4303 12h 219m +4 28' 6x6 66 室女座 旋涡星系 M62 NGC6266 17h 012m +30 07' 14 88 蛇夫座 球状星团 M63 NGC5055 13h 158m +42 02' 12x8 86 猎犬座 旋涡星系 太阳花星系 M64 NGC4826 12h 567m +21 41' 9x5 85 后发座 旋涡星系 黑眼星系 M65 NGC3623 11h 189m +13 05' 10x3 93 狮子座 旋涡星系 M66 NGC3627 11h 202m +12 59' 9x4 90 狮子座 旋涡星系 M67 NGC2682 8h 504m +11 49' 30 69 巨蟹座 疏散星团 M68 NGC4590 12h 395m +26 45' 12 82 长蛇座 球状星团 M69 NGC6637 18h 314m -32 21' 4 77 人马座 球状星团 M70 NGC6681 18h 432m -32 18' 8 81 人马座 球状星团 M71 NGC6838 19h 539m +18 47' 7 83 天箭座 球状星团 M72 NGC6981 20h 535m -12 32' 6 94 宝瓶座 球状星团 M73 NGC6994 20h 590m -12 38' 3 89 宝瓶座 疏散星团 M74 NGC628 1h 367m +15 47' 10x10 92 双鱼座 星系 M75 NGC6864 20h 061m -21 55' 6 86 人马座 球状星团 M76 NGC651 1h 424m +51 34' 1 122 英仙座 行星状星云 M77 NGC1068 2h 427m -00 01' 7x6 88 鲸鱼座 星系 M78 NGC2068 5h 467m +00 03' 8x6 - 猎户座 弥散星团 M79 NGC1904 5h 245m +24 33' 9 80 天兔座 球状星团 M80 NGC6093 16h 171m +22 59' 9 72 天蟹座 球状星团 M81 NGC3031 9h 556m +69 04' 26x14 69 大熊座 星系 M82 NGC3034 9h 558m +69 41' 11x5 84 大熊座 星系 M83 NGC5236 13h 370m -18 52' 11x10 80 长蛇座 星系 M84 NGC4374 12h 251m +12 53' 5x4 93 室女座 星系 M85 NGC4382 12h 254m +18 11' 7x5 92 后发座 星系 M86 NGC4406 12h 262m +12 57' 7x6 92 室女座 星系 M87 NGC4486 12h 308m +12 24' 7x7 86 室女座 星系 M88 NGC4501 12h 320m +14 25' 7x4 95 后发座 星系 M89 NGC4552 12h 357m +12 33' 4x4 98 室女座 星系 M90 NGC4569 12h 368m +13 10' 10x5 95 室女座 星系 M91 NGC4548 12h 354m +14 30' 5x4 102 后发座 星系 M92 NGC6341 17h 171m +43 08' 11 65 武仙座 球状星团 M93 NGC2447 7h 446m +23 52' 22 62 船尾座 疏散星团 M94 NGC4736 12h 509m +41 07' 11x9 82 猎犬座 星系 M95 NGC3351 10h 440m +11 42' 7x5 97 狮子座 星系 M96 NGC3368 10h 468m +11 49' 7x5 92 狮子座 星系 M97 NGC3587 11h 148m +55 01' 3 120 大熊座 行星状星云 猫头鹰星云 M98 NGC4192 12h 138m +14 54' 10x3 101 后发座 星系 M99 NGC4254 12h 188m +14 25' 5x5 98 后发座 星系 M100 NGC4321 12h 229m +15 49' 7x6 94 后发座 星系 M101 NGC5457 14h 032m +54 21' 27x26 77 大熊座 星系 M102 NGC5866 15h 065m +55 46' 5x2 100 天龙座 星系 车轮星系 M103 NGC581 1h 332m +60 42' 6 74 仙后座 疏散星团 M104 NGC4594 12h 400m -11 37' 8x4 83 室女座 星系 草帽星系 M105 NGC3379 10h 478m +12 35' 5x4 93 狮子座 星系 M106 NGC4258 12h 190m +47 18' 18x8 83 猎犬座 星系 M107 NGC6171 16h 325m -13 03' 10 81 蛇夫座 球状星团 M108 NGC3556 11h 115m +55 40' 8x3 101 大熊座 星系 M109 NGC3992 11h 576m +53 23' 8x5 98 大熊座 星系 M110 NGC205 0h 404m +41 41' 17x10 80 仙女座 星系

561赞·34,769浏览2017-11-26

与科幻有关的星球的名字,越多越好

1、塞伯坦星球 塞伯坦,是美日合作开发的《变形金刚》(玩具、动画、影片等系列产品)剧情中变形金刚的母星。 塞伯坦又译作“赛博坦”或“塞伯特恩”,变形金刚种族的母星,美版名为Cybertron,其实体为变形金刚种族的造物神Primus(元始天尊)。 塞伯坦围绕半人马座阿尔法星轨道运行,是一个和地球近邻土星体积近似的巨大金属行星。它由多种不同属性的金属矿石组成,是那些能使自己身体在机器人形态和各种变形形态之间转换的强大机械生命体的故乡。数百万年来,主要派别——汽车和霸天虎。 2、潘多拉星球 潘多拉(Pandora)是**《阿凡达》中虚构的一颗卫星。学名“半人马阿尔法B-4”,是半人马阿尔法星中的一颗星球,大小和地球差不多。潘多拉并不是一个行星,它其实是一个巨型气体行星的卫星。 3、死星 刘慈欣小说《超新星纪元》中提到的一颗恒星,那颗恒星直径是太阳的二十三倍,质量是太阳的六十七倍,步入晚年期。 4、瓦肯星 瓦肯(Vulcan)一般指的是瓦肯星。瓦肯星是美剧——《星际迷航》系列电视连续剧中宇宙和星际联邦中最重要的智慧种族之一——瓦肯人的母星。 5、致远星 致远星(Reach)是畅销游戏及小说《光晕》(HALO)中人类的近地殖民星球,也是UNSC(联合国太空司令部)的指挥部所在地。因为富含用于制造人类太空战舰装甲的主要材料——A级钛合金的原料金属钛,致远星也是UNSC大型战舰的生产基地。

11赞·10,305浏览2019-09-02

星球名字大全

太多了

8赞·1,388浏览2016-03-13

求各种行星的名字和,谢谢

水星 水星 (Mercury ),中国古代称为辰星。是太阳系中的类地行星,也是岩态行星,其主要由石质和铁质构成,密度较高。自转周期很长为5865天,自转方向和公转方向相同,水星在88个地球日里就能绕太阳一周,平均速度4789km/s,是太阳系中运动最快的行星。无卫星环绕。它是八大行星中是最小的行星,也是离太阳最近的行星。 金星 金星(Venus)是太阳系中八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星。中国古代称之为长庚、启明、太白或太白金星。公转周期是22471地球日。夜空中亮度仅次于月球,排第二,金星要在日出稍前或者日落稍后才能达到亮度最大。它有时黎明前出现在东方天空,被称为“启明”;有时黄昏后出现在西方天空,被称为“长庚”。 地球 地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星。赤道半径为63782公里,其大小在行星中排列第五位。地球有大气层和磁场,表面的71%被水覆盖,其余部分是陆地,是一个蓝色星球。地球是包括人类在内上百万种生物的家园,也是目前人类所知宇宙中唯一存在生命的天体。地球已有45亿岁,有一颗天然卫星月球围绕着地球以2732天的周期旋转,而地球自西向东旋转,以近24小时的周期自转并且以一年的周期绕太阳公转。 火星 火星(Mars)是太阳系八大行星之一,是太阳系由内往外数的第四颗行星,属于类地行星,直径约为地球的一半,自转轴倾角、自转周期均与地球相近,公转一周约为地球公转时间的两倍。在西方称为“战神玛尔斯”,中国则称为“荧惑”。橘红色外表是因为地表的赤铁矿(氧化铁)。火星基本上是沙漠行星,地表沙丘、砾石遍布,没有稳定的液态水体。二氧化碳为主的大气既稀薄又寒冷,沙尘悬浮其中,每年常有尘暴发生。火星两极皆有水冰与干冰组成的极冠,会随着季节消长。 木星 木星,为太阳系八大行星之一,距太阳(由近及远)顺序为第五,亦为太阳系体积最大、自转最快的行星。木星已知63颗卫星,木星主要由氢和氦组成,中心温度估计高达30,500℃。古代中国称之岁星,取其绕行天球一周为12年,与地支相同之故。西方语言一般称之朱比特(拉丁语:Jupiter),源自罗马神话中的众神之王、相当于希腊神话中的宙斯。 土星 土星,为太阳系八大行星之一,至太阳距离(由近到远)位于第六、体积则仅次于木星。并与木星、天王星及海王星同属气体(类木)巨星。古代中国亦称之镇星或填星。 土星主要由氢组成,还有少量的氦与微痕元素,内部的核心包括岩石和冰,外围由数层金属氢和气体包覆著。最外层的大气层在外观上通常情况下都是平淡的,虽然有时会有长时间存在的特征出现。土星的风速高达1,800公里/时,明显的比木星上的风快速。土星的行星磁场强度介于地球和更强的木星之间。 土星有一个显著的环系统,主要的成分是冰的微粒和较少数的岩石残骸以及尘土。已经确认的土星的卫星有62颗。其中,土卫六是土星系统中最大和太阳系中第二大的卫星(半径2575KM)(太阳系最大的卫星是木星的木卫三,半径2634KM),比行星中的水星还要大;并且土卫六是唯一拥有明显大气层的卫星。 天王星 天王星是太阳向外的第七颗行星,在太阳系的体积是第三大(比海王星大),质量排名第四(比海王星轻)。他的名称来自古希腊神话中的天空之神乌拉诺斯(Οὐρανός),是克洛诺斯(农神)的父亲,宙斯(朱比特)的祖父。天王星是第一颗在现代发现的行星,虽然它的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者发现。威廉·赫歇耳爵士在1781年3月13日宣布他的发现,在太阳系的现代史上首度扩展了已知的界限。这也是第一颗使用望远镜发现的行星。 海王星 海王星(Neptune)是环绕太阳运行的第八颗行星,是围绕太阳公转的第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。海王星的质量大约是地球的17倍,而类似双胞胎的天王星因密度较低,质量大约是地球的14倍。海王星以罗马神话中的尼普顿(Neptunus),因为尼普顿是海神,所以中文译为海王星。天文学的符号,是希腊神话的海神波塞冬使用的三叉戟。 冥王星 冥王星,或被称为134340号小行星,于1930年1月由克莱德·汤博根据美国天文学家洛韦尔的计算发现,并以罗马神话中的冥王普路托(Pluto)命名。它曾经是太阳系九大行星之一,但后来被降格为矮行星。与太阳平均距离59亿千米。直径2300千米,平均密度08克/立方厘米,质量1290×10^22 千克。公转周期约248年,自转周期6387天。表面温度在-220°c以下,表面可能有一层固态甲烷冰。暂时发现有四颗卫星。自从70多年前被发现的那天起,冥王星便与“争议”二字联系在了一起,一是由于其发现的过程是基于一个错误的理论;二是由于当初将其质量估算错了,误将其纳入到了大行星的行列。1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。冥王星轨道最扁,以致最近20年间冥王星离太阳比海王星还近。从发现它到现在,人们只看到它在轨道上走了不到1/4圈,因此过去对其知之甚少。冥王星的质量远比其他行星小,甚至在卫星世界中它也只能排在第七、第八位左右。冥王星的表面温度很低,因而它上面绝大多数物质只能是固态或液态,即其冰幔特别厚,只有氢、氦、氖可能保持气态,如果上面有大气的话也只能由这三种元素组成。 进入21世纪,天文望远镜技术的改进,使人们能够进一步对海王星外天体(trans-Neptunian objects)有更深了解。2002年,被命名为50000 Quaoar(夸欧尔)的小行星被发现,这个新发现的小行星的直径(1280公里)要长于冥王星的直径的一半。2004年,被命名为90377 Sedna(塞德娜)的小行星的最大直径也达到了1800公里,而冥王星的直径也只不过2320公里左右。 2005年7月9日,又一颗新发现的的海王星外天体被宣布正式命名为厄里斯(Eris)。根据厄里斯的亮度和反照率推断,它要比冥王星略大。这是1846年发现海王星之后太阳系中所发现的最大天体。尽管当初并没有官方的共识,它的发现者和众多媒体起初都将之称为“第十大行星”。也有天文学家认为厄里斯的发现为重新考虑冥王星的行星地位提供了有力佐证。 就连冥王星的显著特征——它的卫星和大气,也并不是独一无二的,海王星外天体带中的一些小行星也有自己的卫星。而且厄里斯的天体光谱分析也显示它和冥王星有着相似的地表,此外厄里斯也有一个较大的卫星戴丝诺米娅(Dysnomia)。 “星籍”争议 而冥王星符合上述第三条行星标准。 国际天文学同盟会进一步决议通过冥王星应该归入矮行星(dwarf planet)之列,而且可以作为尚未命名的一类海王星外天体的原形。在此决议之前,人们也提出了不同的行星方案,其中一些甚至提到除了冥王星外也取消火星和水星的行星资格,而另外一些则提议将一些小行星也纳入行星之列。

233赞·12,454浏览2017-09-13

宇宙中所有的星系名称

放开眼界,环顾整个宇宙,浩瀚无垠。宇宙中都有些什么呢? 我们居住的地球是太阳的一个大行星。太阳系中的九个大行星以太阳为中心由内向外排列的顺序是:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。其中除了水星和金星外,其余七颗行星都有自己的卫星,目前,太阳系中已发现的卫星有近50颗。在太阳系中,还有为数众多的小行星、彗星、流星和陨星等。那么,在太阳系之外,还有什么呢? 在晴朗的夜晚,天空布满了星星,其中,恒星占绝对多数。恒星,就是像太阳一样自己能够发光的天体。我们银河系就有上千亿颗恒星。恒星的体积、光度、质量和密度等都有很大差别。有的星星很亮,光度比太阳大上百倍到一万倍,这种星叫巨星。有的星星,光度比太阳亮上万倍到几百万倍,半径可超过太阳的一千倍,叫做超巨星。还有一种光度低、体积小而密度极大的白色星叫白矮星。 有的白矮星光度小到只有太阳的几万分之一,体积只有地球的几十分之一大,而密度却大到每立方厘米几百公斤、几吨甚至上千吨。目前已经发现的白矮星就有1000多颗,据估计,光我们银河系的白矮星就有100亿颗。1967年,人们发现了一种快速自转的中子星,又叫脉冲星。中子星是恒星中最小的侏儒,大多数中子星的直径只有10公里左右,可是它的密度却大得惊人,每立方厘米达1亿吨,如果用万吨巨轮来拖,中子星上1立方厘米的物质需要1

星系

当遥望星空时,横贯天际、蔚为壮观的银河总能让人们欣然神往,思绪万千。仔细观察的话,我们也能看出银河实际上是由许许多多颗星星所组成的。在天文学中,我们把这种由千百亿颗恒星以及分布在它们之间的星际气体、宇宙尘埃等物质构成的,占据了成千上万亿光年空间距离的天体系统叫做“星系”。我们的太阳就是银河系中普通的一颗恒星。

银河并不是宇宙中唯一的星系:通过各种方法,人们已经观察到的星系已经有好几万个了!不过,由于距离太遥远,它们看起来远不如银河那么壮丽。借助望远镜,它们看起来还只像朦胧的云雾。离咱们银河系最近的星系——大麦哲伦星云和小麦哲伦星云,距离我们银河系也有十几万光年。一般地,我们把除银河以外的星系,统称为“河外星系”。

星系在早期曾被归到星云中,直到1924年,在准确测定了仙女座星云(现应严格称为“仙女座河外星系”)的距离后,星系的存在才正式确立。

星系的形状是多种多样的。我们可以粗略地划分出椭圆星系、透镜星系、漩涡星系、棒旋星系和不规则星系等五种来。星系在太空中的分布也并不是均匀的,往往聚集成团。少的三两成群,多的则可能好几百个聚在一起。人们又把这种集团叫做“星系团”。

星系和它内部的恒星都在运动中。我们都知道地球绕着太阳旋转,同时太阳也在绕银河系的中心运动,而同时银河系作为一个整体,本身也在运动着。在星系内部,恒星运动的方式有两种:它一面绕着星系的核心旋转,与此同时还在一定的范围内随机地运动(科学家称之为“弥散运动”)。

星系的起源和演化,与宇宙诞生早期的演化密切相关。一般看法认为:当宇宙从猛烈的爆发中产生时,大量的物质被抛射到空间中。形成宇宙中的“气体云”。这些气体云本身处在平衡之中,但是在某种作用下,平衡被打破了,物质聚集在一起,质量高达今天太阳质量的上千亿倍!这些物质团后来在运动中分裂开,并最终形成无数颗恒星。这样,原始的星系就形成了。一般认为星系形成的时期在一百亿年前左右。

而关于星系的演化,历史上一度曾把星系形态的序列当成演化的序列,即认为星系从椭圆形开始,再逐渐发展成透镜型、漩涡型、棒旋型,最后变成不规则型。这种观点今天已基本上被推翻。目前的看法认为这一过程与恒星形成的力学机理相关,但也仍然停留在假说的阶段。

致密星系

光度几乎全部集中于核心区域的星系。这类星系的表面亮度很高,在照相底片上成像很小,刚好能与恒星的像相区别。因瑞士天文学家F茨威基在20世纪60年代编制星系和星系团表的过程中所发现,故又称茨威基星系。按致密程度还可分为一般致密、中等致密、甚致密和极端致密4类。致密星系并不构成物理性质单一的一类。它包含许多类型的星系。有的致密星系是正常星系,但表面亮度较高。

旋涡星系 是指具有旋涡状结构的河外星系。从外表上看,它是在绕着核心旋转,有旋臂从核心螺旋地伸向空间。其中心区为透镜状,周围围绕着扁平的圆盘,因此,又称为透镜星系。涡旋星系的旋涡形状,最早是在1845年,观测猎犬座星系 M51时发现的。旋涡星系又可分为正常涡旋星系和棒旋星系。正常涡旋星系又可分为三种,分别用a、b、c表示。Sa 型中心区最大,旋臂紧卷;Sb中心区较小,悬臂开展;Sc中心区成为一个小亮核,悬臂松弛。旋涡星系通常有一个结构稀疏的晕,叫做星系晕,笼罩着整个星系,再往外可能还有更稀疏的气体球,称作星系冕星系的质量大约是太阳质量的10亿到1000亿倍典型的旋涡星系是仙女座星系M31它距我们约220万光年,用肉眼能看到它象飘浮着的薄云,星系的中间部分象固体轮子那样在旋转,距离中心越远,旋转速度越低。星系的直径大约在18万光年左右,其质量大约为太阳质量的4000亿倍,其中可能有4000亿颗恒星我们的银河系就是一个巨型的旋涡星系。

注:透镜星系:旋涡星系和棒旋星系之间引入的过渡型S0(无臂旋涡星系)和SB0(无臂棒旋星系)。外形像侧视的透镜。S0(SB0)系与S(SB)系的主要区别:前者有旋臂,后者无。S0(SB0)系与E系的主要区别:前者有星系盘,后者无。

棒旋星系 是指具有一个由恒星组成的棒贯穿其核心部分的旋涡星系。它的臂旋从棒的两端延伸开去,在旋臂里可以看到明亮的星云物质、疏散星团和一些黑暗的物质带。棒体和核心部分似乎连成一体旋转,旋臂则好像是托在棒和核的后面旋转。棒旋星系一般用字母SB表示,按照旋臂从紧卷到展开的次序,又可分为SBa、SBb、SBc三种次型。距离我们最近的大麦哲伦星云、小麦哲伦星云都是棒旋星云,这是1518--1520年,麦哲伦作环球航行时在南半球发现的。它们在银河系外,前者距我们17万光年,后者距我们20万光年,直径分别为银河系的四分之一和十分之一,质量分别为银河系的10%和2%。大麦哲伦星云内有一个剑鱼座S星,光度为太阳的100万倍;另一个是蜘蛛状星云,它是我们观测到的最大的亮星云。大、小麦哲伦星云之间被由氢原子组成的气体"桥"联接起来

椭圆星系 是指形状成圆球形或椭圆形的河外星系。他们看起来很象球状星团,但规模更大。中心区最亮,向边缘逐渐变暗。含有的恒星很多,但没有或仅有少量星际气体和星际尘埃。质量差别很大,质量最小的矮星系(指光度最弱的一类星系,有的是椭圆星系,也有的是不规则星系,质量只有太阳系质量的100万到10亿倍)与球状星团相当;质量最大的超巨型星系可能是宇宙中最大的恒星系统,达10万亿个太阳质量。椭圆星系用字母E表示,后面用数码表示椭圆的级别。E0表示星系呈圆形的盘面,E7是最扁的椭圆星系。研究得比较详细的巨椭圆星系,是室女座星系团中的M87,它不仅有固定的喷射流现象,也有四面八方的喷射流现象它的中心有一个极亮的核心,颜色较蓝,表明其中心有一个大质量的十分致密的天体,很可能是黑洞

不规则星系 外形不规则,没有明显的核和旋臂,也没有旋转对称的星系。这类星系用字母Irr表示。在全天最亮的星系中只占5%。该星系分为两类:IrrI类有隐约可见、不规则的棒状结构;IrrI类具有无定型的外貌,分辨不出恒星星团等组成部分,且往往带有明显的尘埃带。有些IrrII星系可能是爆发后的星系,如M82。有天文学家认为,大、小麦哲伦星云也属不规则星系。不规则星系气体含量多,质量不大,常不超过1010太阳质量。

星云

当我们提到宇宙空间时,我们往往会想到那里是一无所有的、黑暗寂静的真空。其实,这不完全对。恒星之间广阔无垠的空间也许是寂静的,但远不是真正的“真空”,而是存在着各种各样的物质。这些物质包括星际气体、尘埃和粒子流等,人们把它们叫做“星际物质”。

星际物质与天体的演化有着密切的联系。观测证实,星际气体主要由氢和氦两种元素构成,这跟恒星的成分是一样的。人们甚至猜想,恒星是由星际气体“凝结”而成的。星际尘埃是一些很小的固态物质,成分包括碳合物、氧化物等。

星际物质在宇宙空间的分布并不均匀。在引力作用下,某些地方的气体和尘埃可能相互吸引而密集起来,形成云雾状。人们形象地把它们叫做“星云”。按照形态,银河系中的星云可以分为弥漫星云、行星状星云等几种。

弥漫星云正如它的名称一样,没有明显的边界,常常呈不规则形状。它们的直径在几十光年左右,密度平均为每立方厘米10-100个原子(事实上这比实验室里得到的真空要低得多)。它们主要分布在银道面(HOTKEY)附近。比较著名的弥漫星云有猎户座大星云、马头星云等。

行星状星云的样子有点像吐的烟圈,中心是空的,而且往往有一颗很亮的恒星。恒星不断向外抛射物质,形成星云。可见,行星状星云是恒星晚年演化的结果。比较著名的有宝瓶座耳轮状星云和天琴座环状星云。

亮星云 是指较亮的星云。按其发光方式的不同,又可分为发射星云和反射星云两类。中间有一颗非常炽热的恒星(中央星),星云吸收中央星的紫外辐射后再发射可见光辐射,这种亮星云称为发射星云。其光度随中央星的温度的增高而变大。这种星云内有大的气体,富含紫外线的星光,激发这些星云内的气体,从而使这些星云自己发出光芒的。猎户座大星云就是一颗巨大的弥漫星云,它中央和周围有一些明亮的高温星,激发了氢气,使之发出绿色的光辉。它的直径达300万光年,但只有直径27光年的一小部分被星光照亮,从而被我们看到。由于反射了近旁亮星的星光,才使自己变量的星云,称之为反射星云。这类星云正如月亮和行星靠反射太阳光而发亮一样。反射星云星光,之所以会遭受反射[应该是散射],是因为星云内存在着大量的尘埃[大小为万分之一厘米]。昴星团里的星云就是反射星云中的一个。此外,还有些星云,例如北美洲星云NGC7000,即具有发射星云的性质,又具有反射星云的特征,是混合型的星云。

暗星云 是一种不发光的弥漫星云。我们之所能看到暗星云,是由于它本身吸收了其背景射来的星光,使其背景星光减弱,这样才显现出暗星云的存在。它是一种既不反射所嵌含的恒星的光,自身也不发光的气体云。暗星云吸光的原因,是由于该星云中包含有大小约万分之一厘米的尘埃(这一点与亮星云的物质性质没有本质的区别),这些尘埃团遮掩了背后亮天体的光。它与反射星云的区别指在于,反射星云近旁有亮星,而暗星云的近旁则没有亮星。另外,在宇宙空间中还有许多别的暗星云,表面看来,它们空无一物,实际上却是一块块巨大的气体和尘埃团,只是因为附近没有亮星照射它们。1974年赫歇尔父子最先发现天空中明亮的银河,从天鹅座开始,好像有一条"巨大的裂缝"纵贯银河系,要把银河系劈成两半似的。这片广大的暗区,就是由气体和尘埃组成的一块暗星云。同一块星云上,可既有亮星云,又有暗星云,如著名的猎户座里的马头星云。

弥漫星云 指具有不规则形状,没有明确边界的星云。这类星云比行星状星云大得多,延伸范围平均大小为几十光年,但是要暗弱的多,而且密度也要稀薄得多,每立方厘米只有几个质子和电子。质量大小也不一,一般为太阳质量的10倍。大的可达太阳质量的数千倍,小的只有太阳质量几分之一,一般由气体和尘埃组成。在银河系里,弥漫星云分布很不均匀,有的也有成群结构的现象。这种星云种类很多,形态也不一样,大致可分为亮星云、暗星云、发射星云、反射星云以及球状体等。

行星状星云 是指外形呈圆盘状或环状的并且带有暗弱延伸视面的星云,属于发射星云的一种。在望远镜中看去,它具有像天王星和海王星那样略带绿色而有明晰边缘的圆面。1977年,FW赫歇尔发现这类天体后,称它们为行星状星云。其中央部分有一个很小的核心,是温度很高的中心星。行星状星云的气壳在膨胀,速度为每秒10公里到50公里。其化学组成和恒星差不多,质量一般在01到1个太阳质量之间,密度在每立方厘米100到10,000个原子[离子]之间,温度为6000K到10,000K,中心星的温度高达30,000K以上。据估计,行星状星云的寿命平均约为30,000左右。这类星云出现,象征着恒星已到晚年。在银河系存在期间[大约10--100亿年],将近有10亿到100亿个恒星,经历过行星状星云阶段。因此,这种天体很可能是一种普遍存在的天体。银河系中大部分恒星,很可能都要经过行星状星云而后才"死亡"。

超新星遗迹 是超新星爆发时,星体的外层向空间迅猛地抛出大量物质,它们与星际物质作用,形成遗留在空间的丝状气体云和气壳。射电天文学问世以来,发现超新星遗迹都是很强的射电源。目前,银河系内已找到一百多个,其中,蟹状星云是很重要而又进行了比较详细研究的一个超新星遗迹。大多数超新星遗迹都具有丝状的亮云或壳层。这些丝状物都在向外膨胀,不同的丝状物又不同的膨胀速度,超新星遗迹发出的光很强,蟹状星云虽然在将近1000年前的宋代发现它的爆发,但现在以及所发出的光度竟比太阳光还要强10,000倍。普遍认为,遗迹的发光机制是同步加速辐射,即高能电子绕着磁场高速旋转所发出的辐射。

星团

恒星往往成群分布。一般地,我们把恒星数在十个以上而且在物理性质上相互联系的星群叫做“星团”。比如金牛座中的“昴星团”、“毕星团”,巨蟹座的蜂巢星团等。

根据星团包含的恒星数、星团的形状和在银河系中位置分布的不同,星团又分为疏散星团和球状星团。疏散星团一般由十几到几千颗恒星组成,结构松散、形状也不规则。它们一般分布在银道面附近,所以也被称作“银河星团”。在银河系内发现的疏散星团目前有一千多个,其中包括刚提到的金牛座昴星团、毕星团。

球状星团则由成千上万、多至几十万的恒星组成。它们聚集成球形,越往中心越密集。球状星团大多都分布在银河系中心方向。一个球状星团内的恒星差不多都是在同一时期形成的,它们的演化过程也大致相同。比较著名的如武仙座的球状星团,它由大约二百五十万颗恒星组成,离我们大约25万光年。

  金牛座

  M1——蟹状星云

  M1就是著名的蟹状星云,它是一团无定形的膨胀气体云。它被划为行星状星云,但本质上与典型的行星状星云完全不同。它已被证认为超新星遗迹。

  M1基本资料:

  赤经(h:m)05:315(0531+21)

  赤纬(deg:m)+21:01

  所在星座:金牛座

  离地球距离:63千光年

  视星等:84

  中国史书上有关于1054年(北宋仁宗至和元年)7月4日凌晨4点左右出现的特亮超新星事件的观测记载。这个超新星爆发时亮度超过金星,约为金星的四倍,也就是-6等,它的遗迹(爆发过程中抛射的气体云)就是现在看到的蟹状星云。《宋会要》记载:“初 ,至和元年五月,晨出东方,守天关。昼见如太白,芒角四出,色赤白,凡见二十三日”(23日指白天看到天数,在夜空中被肉眼持续观测了653天)1054超新星被西方天文界称为“中国超新星”。亚历桑那州的Navaho Canyon和White Mesa以及新墨西哥州的Chaco Canyon国家公园的发现表明,这颗超新星也有可能被Anasazi印地安人记录下来;在Chaco Canyon Anazasi艺术在线网站上可以找到有关这项研究的综述。另外,德克萨斯大学的Ralph R Robbins也发现新墨西哥的Mimbres印地安人也可能描述过这颗超新星。1054年的这颗超新星现在按照变星规则命名为金牛座CM它是少数几个位于我们的银河系内的历史上被观测到的超新星之一。

  星云状遗迹在1731年被John Bevis发现,并且被标记在他绘制的大布列颠天文图册(Uranographia Britannica)上。1758年8月28日,当时正在寻找首次按预言回归的哈雷彗星的Charles Messier独立地发现了它,最初他认为这是颗彗星。当然,很快他就意识到它完全没有位移,于1758年9月12日将它标记下来。正是这个天体的发现促使Charles Messier开始编纂他的星云表。也正是这个天体的发现,使他产生了用望远镜搜寻彗星的想法,因为这个天体在他的小折射望远镜中跟一颗真正的彗星(1758 De la Nux, C/1758 K1)非常相似(参见他的记录)。1771年6月10日,Messier从一封信中知道了Bevis先前的发现,并且承认了Bevis的最早发现权。

  1731年,英国天文爱好者比维斯首次用小型望远镜发现了这个朦胧的椭圆形雾斑。1771年刊布的《梅西叶星表》,把它列为第一号天体:M1在《星云星团新总表》中,它的编号是NGC19521844年英国 WP罗斯用他自制的大型反射望远镜观察到星云的纤维状结构。他根据目视观察的印象,把星云描绘成蟹钳状,因而名为蟹状星云,并沿用至今。

  这个星云因为1844年左右Ross爵士绘制的一幅素描而被命名为“蟹状星云”。在最早期的观测中,Messier,Bode和William Herschel正确地描述了这个星云是不能被分解成恒星的,但是William Herschel却认为这是个星团,可以被更大的望远镜分解出来。John Herschel和Ross爵士错误地认为它“刚好可以被分解”成恒星。他们和其他人,包括1850年代的Lassell,显然将其中的纤维结构误认为可以分辨的恒星了。 19世纪末,由Winlock等人进行的早期光谱观测揭示了这个天体的气体本质。M1的第一张照片是1892年用20英寸望远镜拍到的。最早的详细光谱分析是1913到1915年间由Vesto Slipher完成的;他发现光谱中的发射线是分裂的;这在后来被认为是多普勒效应的结果,其中一部分星云正在接近我们(这样谱线就会蓝移)而另一部分则远离我们(谱线红移)。Heber D Curtis根据Lick天文台的照片,在他的描述中将这个天体暂时归类为行星状星云(Curtis 1918),这种观点到1930年就被否定了;但这种错误的分类方式仍然出现在许多最新的手册中。 1921年,Lowell天文台的CO Lampland在比较用42英寸反射望远镜得到的精细照片时发现,星云的各部分都有明显的运动和变化,亮度也在变化,其中星云中心那对恒星附近的几块小区域内的变化更是非常戏剧化(Lampland 1921)。同一年,Wilson山天文台的JC Duncan比较了相差115年拍摄的照片,发现蟹状星云以每年平均02“的速度膨胀,追溯这一运动可以发现这个膨胀始于大约900年前(Duncan 1921)。同样在这一年,Knut Lundmark发现这个星云与1054年超新星有关(Lundmark 1921)。 1942年,根据Wilson山天文台的100英寸Hooker望远镜的观测,Walter Baade计算出精确的膨胀年龄为760年,这意味着星云是在1180年左右开始膨胀的(Baade 1942);后来的观测将这一时间修正为1140年。实际超新星爆炸是发生在1054年,这表明星云的膨胀必须是加速的。 星云由超新星炸出的物质组成,现在已经扩散到直径大约10光年的范围内,并且仍以高达1,800千米/秒的超高速向外膨胀。它的发射线谱由两个主要部分组成,这最早是由Roscoe Frank Sanford在1919年通过分光观测发现的,参见(Sanford 1919),1930年的由Walter Baade和Rudolph Minkowski所做的照相观测也证实了这一点。首先是发射线谱(包括氢发射线),来自星云中偏红色的、构成杂乱无章的网络状结构的亮纤维部分,这与弥漫气体星云(或是行星状星云)相似。另一部分是连续谱,来自星云中偏蓝色的背景部分,是由高度偏振的”同步加速辐射“产生的。同步加速辐射是由强磁场中的高能(快速运动)电子发射出来的。这一解释最早是由苏联天文学家J Shklovsky (1953)首次提出的,并且被Jan H Oort and T Walraven (1956)的观测所支持。同步加速辐射也出现在宇宙中其他的”爆发“过程中,比如不规则星系M82的活动核心和巨椭圆星系M87的奇特喷流。蟹状星云在可见光波段的这种惊人性质可以从英澳天文台(Anglo Australian Observatory)的David Malin用Palomar望远镜拍到的照片和Paul Scowen在Palomar山上拍到的照片中清楚地看出来。 1948年,蟹状星云被认证为一个强射电源,被命名和标记为金牛座A,后来被称为3C 144星云发出的X射线也在1963年4月被Naval Research Laboratory发射的载有X射线探测器的Aerobee型探空火箭发现;这个X射线源被命名为金牛座X-1通过1964年7月5日的月掩蟹状星云观测,以及1974年和1975年同样的观测,证明X射线是从一个至少2角分的区域内发射出来,蟹状星云通过X射线发射的能量比它在光学波段的能量高100倍左右。尽管如此,即使在可见光波段,这个星云的光度也是非常巨大的:它的距离为6,300光年(这是由Virginia Trimble (1973)精确测量得到的),这样它的视亮度对应的绝对星等就是-32等左右,超过太阳光度的1000倍。它在所有波段的总光度估计是太阳光度的100,000倍,也就是510^38尔格/秒! 1968年11月9日,一个脉冲射电源,蟹状星云脉冲星(也被称为NP0532,”NP“是指NRAO(美国国家射电天文台)脉冲星,或者PSR 0531+21),在M1中被发现。发现者是位于波多黎各的Arecibo天文台的天文学家,利用的望远镜是300米的射电望远镜。这颗脉冲星是照片中位于星云中心附近的那对恒星中右侧(西南方)的那颗。这颗脉冲星也是第一颗被发现的光学波段脉冲星,是亚历桑那州Tucson市Steward天文台的WJ Cocke,MJ Disney和DJ Taylor在1969年1月15日当时时间晚上9:30分(根据Simon Mitton的记录,是世界标准时1969年1月16日3:30分)利用Kitt峰上的90厘米(36英寸)望远镜发现的,他们发现它闪烁的周期与射电脉冲星的周期一样,都是33085毫秒。这颗光学脉冲星有时也以超新星的标记法命名为金牛座CM 现在认为,这颗脉冲星是快速旋转的中子星:它每秒钟自转大约30圈!这个周期被定得很精确,因为中子星表面的”热斑“几乎在电磁波的所有波段都放出脉冲。中子星是个致密的天体,比原子核的密度还高,把超过一个太阳质量的物质聚集在30千米的范围内。它与星云中磁场的相互作用使得旋转逐渐变慢;这也是使星云发光的主要能源;就像前面提到的,这个能源比我们的太阳要强100,000倍。 在可见光波段,这颗脉冲星的视星等为16等。这颗非常小的星星的绝对星等为+46等,与我们的太阳在可见光波段的光度相当! Jeff Hester和Paul Scowen利用Hubble太空望远镜来研究了蟹状星云M1(可以参考Sky & Telescope杂志1995年1月第40页)。他们利用HST进行的持续研究为研究蟹状星云及其脉冲星的动力学和演化提供了新的证据。最近,HST的天文小组还研究了蟹状星云的核心部分。 这个天体受到了如此之多的关注,以至于将当时的天文学家分成了大致相当的两个部分:一部分人的工作与蟹状星云有关,而另一部分则是无关的。1969年6月在亚历桑那州的Flagstaff召开了一次”蟹状星云研讨会“(会议结果可参看PASP 1970年5月第82卷——Burnham)。1970年8月在Jodrell Bank天文台举行的IAU(国际天文学会)第46次研讨会也是专注于这一天体的。Simon Mitton在1978年写了一本很好的关于蟹状星云M1的小册子,至今仍然是最通俗易懂和资料最丰富的(这也是这里的许多资料的来源)。 蟹状星云可以相当容易地通过金牛座Zeta星(或者金牛座123星)找到。这颗星是公牛的”南侧尖角“,是颗3等恒星,可以容易地在毕宿五(金牛座Alpha星)的东偏东北方向找到。M1就在Zeta星偏北1度,偏西1度的地方,就在另一颗六等恒星Struve 742的偏南一点,偏西半度的位置。 这个星云可以容易地在晴朗黑暗的天空中看到,同样也很容易被非理想条件下的天光背景所掩盖。M1在7x50或10x50的双筒镜中可以刚好被看到,呈现为一个暗斑。更大一点的倍率可以看到它是个卵形星云状光斑,周围被雾气所环绕。在一架至少4英寸口径的望远镜中,一些细节会显现出来,星云的内侧可以看到一些微弱的色斑和条纹结构;John Mallas报告说,在最好的条件下,有经验的观测者可以看到它们遍布星云的内侧。爱好者们可以证实Messier的印象,M1在小仪器中看起来确实像一颗没有彗尾的暗彗星。只有在最佳条件下,用更大的望远镜,至少16英寸口径以上,纤维状和精细结构才能被看到。 由于蟹状星云离黄道只有1度半的距离,所以经常会发生与行星会合的现象,偶然会被行星遮掩,也会发生被月亮掩食的现象(前面提到过几次)。 M1刚好位到银河中。金牛座Zeta星是颗奇特的仙后座Gamma型变星,是颗快速自转的、光谱型为B4 III的恒星,向外喷出一层膨胀的气体壳层,它还有一颗暗弱的分光伴星,公转周期约133天。在赤经上比M1早两分钟(即半度)的地方就是恒星Struve 742,也叫ADS 4200这是一颗目视双星,两颗伴星A星(72等,光谱型F8,**)和B星(78等,白色)相距36”,方位角为272度,相互旋转一圈需要大约3000年。

  蟹状星云还是强红外源、紫外源、X射线源和 γ射线源。它的总辐射光度的量级比太阳强几万倍。1968年发现该星云中的射电脉冲星,它的脉冲周期是003309756505419秒(也就是33毫秒),为已知脉冲星中周期最短的一个。1969年又发现它同时是一颗光学脉冲星。目前已公认,脉冲星是快速自旋的中子星,有极强的磁性,是超新星爆发时形成的坍缩致密星。蟹状星云脉冲星的质量约为一个太阳质量,其发光气体的质量也约达15个太阳质量,可见该星云爆发前是质量比太阳大若干倍的大天体。星云距离约6300光年,星云大小约12光年×7光年。

在天文学上,星等是对星星明暗程度的一种表示方法,通俗的说法是一二三四五等等……星等数越小,说明星越亮,星等数每相差1星的亮度大约相差2512倍。一般我们用六等星来检验视觉极限,而六等星的亮度恰好是一等星的1/100。

天空中有一等星21颗,二等星46颗,三等星134颗,四等星458颗,五等星1476颗,六等星4840颗,共计6974颗。这就是一般意义上,我们肉眼能看到的全部星星数。更亮的为0等以至负的星等。例如,太阳是-267等,满月的亮度是-126等,金星最亮时可达-44等。

古人为了方便记忆,就把星空中的星星,想象成一组组图案,这样就可以用来导航、计时。这便是最早的 星座 。古希腊人在2000年前把古巴比伦人的 星座 和希腊神话故事编织到了一起,创立了庞大、丰富的 星座 体系。随着观测天文学的突飞猛进,到了1928年,国际天文学联合会正式划分了通用的88个 星座 :北天28座、黄道12座、南天48座。

以 星座 为基础的星图,成为现代天文学家的基本工具,以便帮助他们锁定各种天体。这大概就是他们的高德地图。其中根据每个 星座 的大部分面积是在北天或在南天,又分别被称为北天 星座 或南天 星座 。至于黄道,通俗的说法,就是太阳每一年在天球上固定的运动路径。

但是换个更通俗的说话,现在的黄道12座,现在已经演变出了占星学,也就是我们都很熟悉的十二 星座 !有一点值得注意的是,由于命名的区别,十二 星座 中的处女座对应的叫室女座,我们说的射手座也叫人马座,宝瓶座就是水瓶座!

地球依著黄道运行,在每一个季节过程中亦可分为三个阶段。因此,黄道 星座 有占星三分法的说法。每一季之首,如白羊座(春)、巨蟹座(夏)、天秤座(秋)及摩羯座(冬),被称为主动 星座 。它们是季节的开始,代表一个新的开始,是事情的成因,因此有影响结果之要素,具有影响他人的特质,所以具开创性。

接下来每一季的第二个 星座 ,如金牛座(春)、狮子座(夏)、天蝎座(秋)及宝瓶座(冬),我们称为固定 星座 。它们是季节的中间,代表承续的发展,受成因的限制并影响结果的发展,因此有承先启后的特质,具有遵守前因规范的性质而被认为是固执及守旧,所以容易满足而显得顽固。

最后每一季的最后一个 星座 ,如双子座(春)、室女座(夏)、人马座(秋)及双鱼座(冬),我们称为变动 星座 。它们是季节的最后,代表最后的结果,完全受成因及与过程发展,毫无自主性地必需接受其它成因的影响,因此极易被影响,具有适应变化的特质,所以容易受影响,代表事情的结束。

古代西方哲学家认为,构成自然界的物体并衍生万物的物质是水、火、地、风四大元素。地球依著黄道运行其实就是四大元素的流转变化,因此黄道12 星座 又有四分法的占星规则——水象 星座 ,如巨蟹天蝎双鱼;火象 星座 ,如白羊狮子射手;土象 星座 ,如摩羯金牛处女;风象 星座 ,如天秤水瓶双子。

地、水、火、风四大自然元素代表四时顺序的意象。于是,水象 星座 象征春天,重 情感 ;火象 星座 象征夏天,重行为;土象 星座 象征秋天,代表务实、稳重;风象 星座 象征冬天,重智慧与沟通。

每一种 星座 ,除了代表的性格之外,也有属于自己的那几颗星。而在遥远的深空中,每颗星星其实都是有令人惊艳的故事。

白羊座是黄道第一 星座 ,位于金牛座西南,双鱼座东面。每年12月中旬白羊座星象图晚上八九点钟的时候,白羊座正在我们头顶。秋季星空的飞马座和仙女座的四颗星组成了一个大方框,从方框北面的两颗星引出一条直线,向东延长一倍半的距离,就可以看到白羊座了。白羊座中最亮星为娄宿三(白羊座α,视星等200)。

在深空中,NGC 772是白羊座里最亮的一个星系,在黑暗的夜晚,使用6英寸(15厘米)的望远镜可以看见它,按照哈柏星系分类法,是一个典型的棒旋星系。

金牛座的毕宿亮星排列呈V字形结构,又称为金牛座V字,其中橙红色的毕宿五是天空上少数的一等星之一,它和双子座的北河三、御夫座的五车二、小犬座的南河三、大犬座的天狼星、猎户座的参宿七共同组成冬季六边形。

在深空中,著名的蟹状星云M1位于金牛座的东北面,M1是1054年7月4日超新星爆发后剩下的超新星残骸。

双子座的西边是金牛座,东边是比较暗淡的巨蟹座。御夫座和非常不明显的天猫座位于它的北边,麒麟座和小犬座位于它的南边。双子座有两颗非常亮的星—北河三和北河二。其它的星都比较暗,只有γ是在城市灯光下也能被看到的,但在远离灯光污染的地方,可以看到稀薄的银河从双子座西部经过。

在深空中,著名的NGC2392位于双子座内,距离地球约5000光年赤经,它是天文学家威廉.赫歇尔在1787年发现的,由于从地面看去,它像是一颗载着爱斯基摩毛皮兜帽的人头,因此又被成为爱斯基摩星云。

在巨蟹座中央的δ星附近(或是狮子座轩辕十四和双子座β星这两颗亮星之间),是黄道十二 星座 中最暗的一个,眼力好的人可以看到一小团白色的雾气,直到望远镜发明以后人们才观测到,它原来是一个星团,天文学上称为“鬼星团”。这个星团的成员有200多颗,距离我们520光年。

在深空中,M67位于巨蟹座柳宿增三(α)以西,它是银河系最古老的星团之一,年龄超过十亿年,距离2700光年。

狮子座位于室女座与巨蟹座之间,北面是大熊座和小狮座,南边是长蛇座、六分仪座和巨爵座,西面是后发座。狮子座是一个明亮的 星座 ,其中最亮星轩辕十四是一颗蓝白色恒星,视星等135,光度在全夜空中排第二十一位,每年3月1日子夜狮子座中心会经过上中天。

在深空中,位于狮子座θ星附近的NGC3628是一个非常美丽的旋涡星系,由于其相对较暗,所以很难用小型的望远镜观测到。

室女座中的主要恒星距离地球800至5000万光年,是最大的黄道带 星座 ,每年的春季太阳落山不久,它就出现在东方的地平线上,在全天88个 星座 中,面积排行第二位,仅次于长蛇座。室女座中亮于55等的恒星有58颗,最亮星为角宿一(室女座α),视星等为098。每年4月11日子夜室女座中心经过上中天。

在深空中,室女座有着非常壮观的星系团,其中包括当中包括M49(椭圆)、M58(螺旋)、M59(椭圆)、M60(椭圆)、M61(螺旋)、M84(椭圆)、M86(椭圆)、M87(椭圆;著名的射电源)及M90(螺旋)。

天秤座位于处女座与天蝎座之间,这个 星座 有十几颗使用8英寸(20厘米)或更大望远镜可见的星系, 星座 中最亮的四颗星α、β、γ、σ构成一个四边形,β星又和春季大三角构成一个大菱形,天秤座β星的中名是“氐宿四”,它是全天惟一一颗肉眼可以看见为绿色的星。天秤座α星“氐宿一”,是一颗双星,由亮度52的α1与亮度28的α2所构成,呈蓝白色。

在深空中,HD140283位于天枰座中,距地球1901光年,这是我们目前所能观测到的最古老的恒星。

天蝎座是夏天最显眼的 星座 ,它里面亮星云集,光是亮于4m的星就有20多颗。天蝎座又大亮星又多,简直可以说是夏夜 星座 的代表。晚上八九点钟的时候,南方离地平线不很高的地方有一颗亮星,这就是天蝎座α星(心宿二)。再加上它也是黄道 星座 ,所以格外引人注目。不过,天蝎座只在黄道上占据了短短7 的范围,是十二个 星座 中黄道经过最短的一个。

在深空中,M7是天蝎座中最突出的一个松散星团,直径约为25光年,距地球约1000光年,其中有约100颗恒星,它们的总年龄约有2亿岁。

人马座正对着银心方向,其中有很多星团和星云。其中亮于55等的恒星有65颗,最亮星为箕宿三(人马座ε),视星等为185。每年7月7日子夜人马座中心经过上中天。在南斗σ和λ两星连线向西延长一倍的地方,可以看到一小团云雾样星云。在望远镜里看上去,它是由三块红色的光斑组成的,十分好看,被称为“三叶星云”。

在深空中,位于射手座中的星系非常多,其中最为引人注目的就是“三叶星云”,在中间偏左位置的是M8星云, M20星云位于右边。另一个为NGC6559。其中M8星云非常庞大,其直径超过100光年。

摩羯座组成一个倒三角形结构,在黑暗的夜晚很容易辨别。其中中亮于55等的恒星有31颗,最亮星为垒壁阵四(摩羯座δ),视星等为281。每年8月8日子夜摩羯座中心经过上中天。

在深空中,摩羯座没有多少有趣的星体,这个区域的星系都很微弱。其中有一个球状星团M30,距地球约24000光年。

宝瓶座是一个大但暗的 星座 ,位于黄道带摩羯座与双鱼座之间,东北面是飞马座、小马座、海豚座和天鹰座,西南边是南鱼座、玉夫座和鲸鱼座。其中亮于55等的恒星有56颗,最亮星为虚宿一(宝瓶座β),视星等为290。每年8月25日子夜宝瓶座中心经过上中天。

在深空中,水瓶座中可以看到非常壮美的一幕—恒星死亡,螺旋星云NGC7293就是一个类似太阳的恒星死亡后产生的,距地球仅700光年,其本身直径约有6光年,很多将这一幕称为“上帝之眼”。

双鱼座最容易辨认的是两个双鱼座小环,特别是紧贴飞马座南面由双鱼座β、γ、θ、ι、χ、λ等恒星组成的双鱼座小环。另一个双鱼座小环位于飞马座东面,由双鱼座σ、τ、υ、φ、χ、ψ1等恒星组成。双鱼座中亮于55等的恒星有50颗,最亮星为右更二(双鱼座η),视星等为362。现在的春分点位于霹雳五(双鱼座ω)附近。

在深空中,双鱼座同样有着壮观的星系团,其中蓝色的星系为NGC474,最左侧的是阿尔普227,这个星系距地球非常遥远,约有100亿光年。

天上的星星有很多,头顶的星河也无比璀璨。占星学上 星座 多有趣,天文学上的星星们,也就多有故事,毕竟呀,科学的尽头就是玄学了。

拉着沙发去巴黎

文字记录旅行,摄影表达情绪。我们在路上絮絮叨叨的讲述,希望通过我的眼睛,可以看到你心中的全世界!

昴星团 Pleiades

  赤经 03 : 470(小时:分) 

  赤纬 +24 : 07(度:分) 

  距离 038(千光年) 

  视亮度 16(星等) 

  视大小 1100(角分)

  昴星团(Pleiades, M45,汉语拼音:mǎo xīng tuán)是疏散星团之一,在北半球看是位于西方大而明亮的疏散星团,位于金牛座,在晴朗的夜空单用肉眼就可以看到它。它的几个亮星位于昴宿,由此而得名。梅西叶星表编号为 M45,肉眼通常见到有六、七颗亮星,所以又常被称为是七姊妹星团,它是离我们最近也是最亮的几个疏散星团之一。昴星团总共含有超过3000 颗的恒星,它的横宽大约13光年,距离128秒差距(417光年),直径约4秒差距。

  中国古代把其中的亮星列为昴宿。有关的传说和神话很多,也被称为“七姊妹星团”。一般肉眼能看到6颗星,因为此星团中您看不到的那颗星星的能见度较低,它是一颗低等星。在此星团中并不是七颗,而是近三百多颗,不过都是非常暗罢了,您不用担心您的眼睛,因为大部分人(即使在很晴朗的夜空下)也很难分辨出这颗星星。 

  其中最亮的 6颗星自西向东的星名、光电目视星等和MK光谱分类依次是:

  金牛座17(昴宿一),371,B6Ⅲ;

  金牛座19(昴宿二),431,B6Ⅳ;

  金牛座20(昴四),388,B7ⅢSn;

  金牛座23(昴宿五),418,B6V;

  金牛座η(昴宿六),287,B7Ⅲ;

  金牛座27(昴宿七),364,B8Ⅲ。

  这些星都在作快速自转。蓝巨星昴宿六表面有效温度约13,500K,总辐射光度约为太阳的2,200倍,半径约为太阳的8倍,但赤道自转一周所需时间还不到3天。昴宿七是轨道周期为好几年的分光双星。昴星团有百分之七的成员星是轨道周期小于 100天的双星。著名气壳星金牛座28(即金牛座BU)就在昴星团内。在昴星团方向已经发现了460个以上的耀星。这个星团没有红巨星。照片上看到的昴星团亮星附近的星云叫作NGC1432,是由星际尘粒反射和散射星光形成的反射星云。这也许是昴星团恒星形成时剩下的星,但更可能是昴星团在运动中遇到的物质。

[编辑本段]星团年龄

  昴星团距离太阳400光年,因含有早B型星,从天文时间尺度来说正处在年少时期。质量为九个太阳的B型星,若收缩到主星序,耗尽其核部的氢并开始膨胀到红巨星,照估计需历时2100万年左右。因此,这个值就应该是疏散星团的年龄。可是,唯有昴星团的颜色一光度图却又清楚地表明,仅含02太阳质量的那些恒星业已渡过了初始收缩阶段,基本上处于零龄主星序上.照最近恒星演化理论估计,质量为02太阳的恒星收缩到零龄主星序所需时间, 大致为60000万年。那么,昴星团的年龄到底是多少呢?究竟是2100万年还是60000万年?

  事实上,矛盾并不像看起来那样尖锐。赫尔比希认为,在形成大质量的恒星之前,先已由星云物质形成了小质量的恒星。如果晚型主序星首先形成,它们就会在早型星收缩到主星序的相同时间内到达零龄主星序,然后燃烧它们核部的氢, 并开始向红巨星阶段膨胀。这一理论好像得到了观测的支持。关于小质量恒星形成较早的又一证据是金牛一御夫座暗星云,在这些星云中大量含有暗弱的红星,而不含有亮的蓝星。 

  所有这一切都表明,拥有大约三百颗星的昴星团开始形成于六亿年以前,一直持续到终于形成了B型星.这些非常亮的恒星辐射着极其丰富的紫外线,它们已把气体电离并彻底吹散,只在银河系中残留下一些气体的痕迹。随着气体的离去,恒星的形成过程也就趋于停止。琢磨一下玫瑰星云很有意思的,它的中心有一群非常亮的恒星,这团星云可能就是因发生这种从中央向外吹散气体的过程而形成的。这一设想或许能解释这种异常有趣的气体与恒星集合体的环状结构.

  昴星团星云是蓝色的,这意味着它们是反射星云,反射着位于它们附近(或者之中)的明亮恒星的光线。这些星云中最明亮的部分,即围绕在昴宿五周围的星云,是1859年10月19日被(意大利)威尼斯的Ernst Wilhelm Leberecht (Wilhelm) Tempel利用4英寸折射镜发现的;它被收入NGC星表中,编号为NGC 1435。Leos Ondra提供了一份在线的Wilhelm Tempel传记,以及一幅昴宿五星云的素描,经同意归入到本资料库中。星云向昴宿四延伸的部分在1875年被发现(即NGC 1432),围绕着昴宿六,昴宿一,昴宿增六和昴宿二的星云在1880年被发现。完整的昴星团的复杂性,直到1885年到1888年间,巴黎的Henry兄弟和英国的Isaac Roberts发明了第一架天文照相机之后,才被揭露出来。1890年,EE Barnard发现星云物质有一个非常靠近昴宿五的恒星状聚集中心,它被编入IC星表,编号为IC 349。1912年,Vesto M Slipher分析了昴星团星云的光谱,揭露了它们的反射星云本质,因为它们的光谱与照亮它们的恒星的光谱一模一样。 

  更多信息可以在我们的昴星团主要恒星及其对应星云的编号列表中找到。 

  本质上来说,反射星云很可能是分子云中的尘埃部分,与昴星团无关,只是刚好穿过昴星团而已。它并不是形成星团的星云的残余部分,这可以从以下事实中看出来,星云与星团拥有不同的径向速度,它们正以每秒68英里,即每秒11千米的速度相互穿越。 

  根据来自日内瓦的一个小组发表的最新计算结果(G Meynet, J-C Mermilliod, and A Maeder in Astron Astrophys Suppl Ser 98, 477-504, 1993),昴星团的年龄为1亿年。这与早期发表的“权威”年龄大了许多,以前的年龄通常在6千到8千万年之间(例如,Sky Catalog 2000给出的年龄为7千8百万年)。还有计算表明,昴星团可以以星团的形式继续存在约2亿5千万年(Kenneth Glyn Jones);此后,它们会沿着各自的轨道分散成单颗恒星(或是聚星)。 

  欧洲航天局的天文测量卫星Hipparcos最近直接用视差法测量了昴星团的距离;根据这些测量,昴星团距我们380光年(此前采用的数值是408光年)。新的距离数值需要对昴星团中恒星相对较暗的视星等给出解释。

[编辑本段]深入探究

  昴星团的Trumpler类型被定为II,3,r型(Trumpler,根据Kenneth Glyn Jones的说法)或者I,3,r,n型(Götz和Sky Catalog 2000),意味着这个星团似乎是独立的,向中心高度聚集或是中等聚集,其中恒星亮度的分布范围较大,成员星较多(超过100颗)。 

  昴星团中有些高速自转的恒星,表面的旋转速度为150到300千米/秒,这在光谱型为(A-B)型的主序星中是普遍现象。由于这种旋转,它们一定是(扁圆的)椭球体,而不是球体。这种旋转之所以能够被发现,是因为它会使得光谱吸收线变得更宽,更发散,因为相对于恒星的平均径向速度而言,位于恒星一侧的部分恒星表面正在接近我们,而另一侧却在远离我们。这个星团的快速自转恒星中最突出的例子是昴宿增十二(Pleione),这也是颗变星,亮度介于477和550等之间(Kenneth Glyn Jones)。O Struve曾经预言这样的旋转会导致恒星抛出气体包层,1938年到1952年间,对昴宿增十二的光谱分析观测到了这一现象。 

  Cecilia Payne-Gaposhkin提到昴星团中包含着一些白矮星(WD)。这给恒星演化提出了一个特殊的问题:白矮星是怎么出现在一个如此年轻的星团中的?由于存在着不止一颗白矮星,因此可以相当肯定这些恒星原来都是星团的成员星,并不都是被捕获的场恒星(总之,捕获过程在这样一个相当松散的疏散星团中效率并不高)。[译注:场恒星,field stars,是指独立的,不成团的恒星。] 按照恒星演化理论,白矮星的质量不可能超过大约14倍太阳质量的上限(钱德拉塞卡极限,the Chandrasekhar limit),更大质量的白矮星会因为它们自身的重力而塌缩。但是如此低质量的恒星演化得极慢,需要几十亿年才能演化到最后阶段,昴星团短短1亿年的年龄显然是不够的。 

  唯一可能的解释是,这些白矮星曾经是大质量恒星,因此它们可以快速演化,但是一些原因(比如强烈的恒星风,邻近恒星的质量吸积,或者快速自转)使他们失去了大部分质量。结果,它们可能将大部分质量都抛入太空,形成了行星状星云。总之,最后剩下来的恒星(即原来的恒星核)质量一定低于钱德拉塞卡极限,这样它们才可能演化到稳定的白矮星阶段,从而被我们观测到。 

  1995年以来对昴星团的最新观测发现了几个异常类型恒星的候选者,或者说是类似恒星的天体,即所谓的褐矮星(Brown Dwarfs)。这种迄今为止仍然只是假说的天体被认为质量介于巨行星(比如木星)和小恒星(恒星结构理论指出最小的恒星,即在其生命阶段中可以通过核聚变制造能量的天体,质量最少不得低于太阳质量的百分之6到7,即60到70倍木星质量)之间。因此褐矮星的质量应该拥为木星质量的10到60倍左右。理论上,它们可以在红外光波段被观测到,直径与木星相当或更小(143,000千米),密度是木星的10到100倍,因为强得多的引力会将它们压得更紧。 

  即使用肉眼,在一般的条件下,昴星团也是相当容易找到的,位于明亮的红巨星毕宿五(Aldebaran,金牛座Alpha,87号星,09等,光谱型K5 III)西北方接近10度的位置。明显包围在毕宿五周围的,是另一个同样著名的疏散星团,毕星团(Hyades);现在知道,毕宿五并不是毕星团的成员,只是一颗前景恒星(距离我们68光年,而毕星团的距离为150光年)。 

  在双筒镜或者广角镜中,这个星团是个壮观的天体,在1 1/5度的直径范围内可以显示超过100颗的恒星。对望远镜来说,即使在最低放大率下,这个星团也大到也无法在一个视场中看到全貌。星团中拥有许多双星和聚星。昴宿五星云NGC 1435需要黑暗的天空才能看见,在广角镜中观测效果最佳(Tempel是用一架4英寸望远镜发现它的)。 

  由于昴星团距离黄道较近(只差4度),星团被月亮掩食的现象会经常发生:这是非常吸引人的奇景,尤其对于那些只拥有廉价器材的爱好者来说(事实上,你用肉眼就可以观测它,不过即使最小的双筒镜或者望远镜都会增加观测的乐趣——1972年3月的月掩昴星团是笔者首次业余天文观测经历之一)。这样的现象可以形象地说明月亮与这个星团之间的相对大小:Burnham指出月亮可以被“塞进由”昴宿六,昴宿一,昴宿五和昴宿二“组成的四边形内”(在这种情况下,昴宿四,甚至昴宿三都会被月亮挡住)。同样,行星也会运行到昴星团附近(金星,火星和水星甚至偶尔会从其中穿过),展示出壮丽的景象。

  宇宙中有六百兆颗星球、几千万个银河系,我们地球所在的银河系叫做Milky Way Galaxy,太阳系位于银河系旁边猎户座的旋臂上,地球绕太阳公转,而整个太阳系则绕昴宿星团公转,昴宿星团绕银河中心公转,大约每240000年,太阳系会完成一次公转。

  神话文艺七仙女星团在中国古代,昴宿为二十八宿之一,这些恒星则称昴宿七(Atlas)、昴宿增十二(Pleione)、昴宿四(Maia)、昴宿一(Electra)、昴宿增十六(Celaeno)、昴宿二(Taygeta)、昴宿五(Merope)、昴宿六(Alcyone)和昴宿三(Sterope)。

  七仙女星团是希腊神话里的七位仙女的化身,她们是擎天神阿特拉斯(Atlas)和其妻Pleione的七个美貌的女儿——迈亚(Maia)、伊莱克特拉(Electra)、塞拉伊诺(Celaeno)、泰莱塔(Taygeta)、梅罗佩(Merope)、亚克安娜(Alcyone)和斯泰罗佩(Sterope)。

  古代日本人把昴星团看成美丽的首饰,对此拥有特别的情意结,有日本流行歌曲以此作题材,如歌唱家谷村新司作表作《すばる》(即关正杰的粤语歌曲《星》与罗文的《号角》),日本国立天文台1998年在夏威夷落成启用的一台82米望远镜称作“昴”(Subaru),富士重工业生产的汽车品牌为subaru等等

  相关神话:在古代,确实能看到7颗,就好似七个仙女,身着蓝白色纱衣在云中漫步和舞蹈。后来不知道在哪一年,有一颗星突然暗了下去,不能见到了,人间在诧异的同时,开始流传着这么一个——“七小妹下嫁”的美丽传说,黄梅戏《天仙配》说的就是她们的故事。

银河系隶属于本星系群,本星系群又属于范围更大的室女座超星系团。

银河系是太阳系所在的棒旋星系,包括1000~4000亿颗恒星和大量的星团、星云以及各种类型的星际气体和星际尘埃,从地球看银河系呈环绕天空的银白色的环带。总质量约为太阳的2100亿倍,隶属于本星系群,最近的河外星系是距离银河系4万2千光年的大犬座矮星系。

扩展资料

银河系主要星座

银河经过的主要星座有:天鹅座、天鹰座、狐狸座、天箭座、蛇夫座、盾牌座、人马座、天蝎座、天坛座、矩尺座、豺狼座、南三角座、圆规座、苍蝇座、南十字座、船帆座、船尾座、麒麟座、猎户座、金牛座、双子座、御夫座、英仙座、仙后座和蝎虎座。

银河在天空中明暗不一,宽窄不等。最窄只有4°~5°,最宽约30°。对于北半球来说,夏季星空的重要标志,是从北偏东地平线向南方地平线延伸的光带——银河,以及由3颗亮星,即银河两岸的织女星、牛郎星和银河之中的天津四所构成的“夏季大三角”。

夏季的银河由天蝎座东侧向北伸展,横贯天空,气势磅礴,极为壮美。但只能在没有灯光干扰的野外(极限可视星等55以上)才能欣赏到。冬季的那边银河很黯淡(在猎户座与大犬座),但在天空中可以看到明亮的猎户座,以及由天狼星、参宿四、南河三构成的明亮的“冬季大三角”。

参考资料:

——银河系

——本星系群

注意了。你最好看看。

12星座在哪里?仰望星空,你会迷失在星空中吗?我们一直在说的十二星座在哪里?

其实全天有88个星座,北半球48个,南半球40个。我们说的12星座,都位于北回归线和北回归线之间的黄道带(地球公转的轨道带)。黄道带及其8上下范围涵盖了我们所知道的12个星座。随着季节的变化,我们在夜空中能看到的星座的位置也在变化。

春季主要星座:大熊星座、小熊座、狮子座、牧羊座、犬科、处女座、大熊星座、九头蛇星座。夏季主要星座:天鹅座、天琴座、天鹰座和天蝎座。主要秋季星座:飞马座、仙女座、英仙座和仙后座。冬季主要星座:猎户座、金牛座、大犬座、巨蟹座、狮子座、波江座、船底座、天蝎座、射手座。

|春季星图春季,夜空中最亮的三颗星:狮子座五帝星、室女座牛郎星、牧夫座大角星,与猎户座cor caroli星一起组成春季三角,呈侧视菱形排列,被称为大春钻石。找到狮子座的星后,它东边的星星都是狮子座的。狮子座的人很容易观察到,在狮子座中,、、三颗星形成了一个显著的三角形,这是贪玩的狮子座的后身和尾巴。到的六颗星形成镰刀的形状,也像一个反写的问号。这是一只狮子的头。当连接大熊座北极星的两颗星,也就是勺口,向北极星反方向延伸时,就可以发现它。狮子座西边是巨蟹座,东边是处女座,但两者都相对暗淡。

|夏季星图在夏季的夜空中,仰角约40度的地方,你很容易看到一颗明亮的橘红色恒星,伴随着它左右两侧的一颗小星,形成一个弧形的特征,那就是代表天蝎座心脏的阿尔法星(心宿二)。以心宿二的弧度特征和两边的小星,可以发现形成一条直线的四颗小星,也就是天蝎座的头。然后随着天蝎座弯曲的胸部向下延伸到大约10颗小星星组成一个鱼钩,这就是天蝎座的尾巴。这是夏季星座的代表,美丽的天蝎座。继续以天蝎座为中心。在它的北面是蛇夫座,在它的左边,我们可以找到六颗具有北斗七星特征的星星,也就是传说中多看到这颗星星可以让人活一百岁——南斗六星。

|秋日星图天顶以东是飞马座。从天琴座到天鹅座连成一条直线,然后向东南方向延伸,你很容易发现一个很大的方形星座,这就是飞马座,秋季星空最明显的目标。从这里开始找秋天的其他星座还是挺容易的。你可以在从东方到北极星的直线上找到W形的仙后座。从飞马座西面开始,两颗星向南延伸,是秋季唯一的一等星,是熊座的北大门。仙女座是飞马座东北方的一个直星座。它是仙后座南部的一个美丽的星座。仙女座的M31星云是肉眼可见的星云,距离我们大约200万光年。仙女座星云。这是一个比银河系大得多的星系,也是北半天距离我们最近的星系。仙女座的北面是W形仙后座。仙后座的西边是仙王座,东边是英仙座,还有著名的英仙座的食变星大凌五世。英仙座和仙后座之间是英仙座双星团。8月中旬的夜晚,天空中会出现英仙座流星群,据记载每小时会出现100多颗流星。

|冬季星图猎户座是冬季夜空中最亮的星座。金牛座就在猎户座的正上方。冬天的南方天空,全天最亮的星星天狼星是大犬座的主星。它与天狼星的南河三和猎户座的参宿四形成了一个更大的等边三角形。这三颗星都非常明亮,参宿四是三角形中最西边的一颗,它是火红的。如果你找到参宿四,你会发现猎户座的肩膀。再找金牛就方便了。记住金牛座的两个标志:1。由五颗星星组成的V字。在V字形的一角,金牛座的主星阿鲁迪巴也是一颗明亮的红星。这个V是金牛座的牛头,阿鲁迪巴是牛眼。2一群模糊的星星。这是金牛座的昴宿星团,位于金牛座的背面,肉眼可见。金牛座西边是白羊座,东边是双子座。

以下是十二星座的具体样子,是不是很抽象?

太阳只会在12星座的南北运行。12星座有大有小,时间的流逝有长有短。为了方便统计,星座的宽度被统一划分,抽象为当前的十二宫。从春分开始,分别是白羊座、金牛座、双子座、巨蟹座、狮子座、处女座、天秤座、天蝎座、射手座、摩羯座、水瓶座、双鱼座。

蛇夫座在哪?从2016年开始,美国宇航局正式承认蛇夫座被列入黄道十二宫的第13个星座。射手座介于天蝎和射手座之间,踩天蝎好霸气。

蛇夫座也是黄道十二宫的星座,但是只有两只脚进入了黄道十二宫。古代的黄池,角度比现在小。太阳8天只经过蛇夫座,黄道十二宫只需要12宫,所以忽略了蛇夫座。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1563333.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-14
下一篇2023-10-14

发表评论

登录后才能评论

评论列表(0条)

    保存