恒星的一生是怎样形成的??

恒星的一生是怎样形成的??,第1张

我们首先来看恒星的一生:

恒星的诞生

在星际空间普遍存在着极其稀薄的物质,主要由气体和尘埃构成。它们的温度约10~100K,密度约10-24~10-23g/cm3,相当于1cm3中有1~10个氢原子。星际物质在空间的分布并不是均匀的,通常是成块地出现,形成弥漫的星云。星云里3/4质量的物质是氢,处于电中性或电离态,其余约是氦以及极少数比氦更重的元素。在星云的某些区域还存在气态化合物分子,如氢分子、一氧化碳分子等。如果星云里包含的物质足够多,那么它在动力学上就是不稳定的。在外界扰动的影响下,星云会向内收缩并分裂成较小的团块,经过多次的分裂和收缩,逐渐在团块中心形成了致密的核。当核区的温度升高到氢核聚变反应可以进行时,一颗新恒星就诞生了。'

主序星

恒星以内部氢核聚变为主要能源的发展阶段就是恒星的主序阶段。处于主序阶段的恒星称为主序星。主序阶段是恒星的青壮年期,恒星在这一阶段停留的时间占整个寿命的90%以上。这是一个相对稳定的阶段,向外膨胀和向内收缩的两种力大致平衡,恒星基本上不收缩也不膨胀。恒星停留在主序阶段的时间随着质量的不同而相差很多。质量越大,光度越大,能量消耗也越快,停留在主序阶段的时间就越短。例如:质量等于太阳质量的15倍、5倍、1倍、02倍的恒星,处于主序阶段的时间分别为一千万年、七千万年、一百亿年和一万亿年。

目前的太阳也是一颗主序星。太阳现在的年龄为46亿多年,它的主序阶段已过去了约一半的时间,还要50亿年才会转到另一个演化阶段。与其他恒星相比,太阳的质量、温度和光度都大概居中,是一颗相当典型的主序星。主序星的很多性质可以从研究太阳得出,恒星研究的某些结果也可以用来了解太阳的某些性质。

红巨星与红超巨星

当恒星中心区的氢消耗殆尽形成由氦构成的核球之后,氢聚变的热核反应就无法在中心区继续。这时引力重压没有辐射压来平衡,星体中心区就要被压缩,温度会急剧上升。中心氦核球温度升高后使紧贴它的那一层氢氦混合气体受热达到引发氢聚变的温度,热核反应重新开始。如此氦球逐渐增大,氢燃烧层也跟着向外扩展,使星体外层物质受热膨胀起来向红巨星或红超巨星转化。转化期间,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不升高反而会下降。其原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍然可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度虽可能增长,表面温度却会下降。质量高于4倍太阳质量的大恒星在氦核外重新引发氢聚变时,核外放出来的能量未明显增加,但半径却增大了好多倍,因此表面温度由几万开降到三、四千开,成为红超巨星。质量低于4倍太阳质量的中小恒星进入红巨星阶段时表面温度下降,光度却急剧增加,这是因为它们外层膨胀所耗费的能量较少而产能较多。

预计太阳在红巨星阶段将大约停留10亿年时间,光度将升高到今天的好几十倍。到那时侯,地面的温度将升高到今天的两三倍,北温带夏季最高温度将接近100℃。

大质量恒星的死亡

大质量恒星经过一系列核反应后,形成重元素在内、轻元素在外的洋葱状结构,其核心主要由铁核构成。此后的核反应无法提供恒星的能源,铁核开始向内坍塌,而外层星体则被炸裂向外抛射。爆发时光度可能突增到太阳光度的上百亿倍,甚至达到整个银河系的总光度,这种爆发叫做超新星爆发。超新星爆发后,恒星的外层解体为向外膨胀的星云,中心遗留一颗高密天体。

金牛座里著名的蟹状星云就是公元1054年超新星爆发的遗迹。超新星爆发的时间虽短不及1秒,瞬时温度却高达万亿K,其影响更是巨大。超新星爆发对于星际物质的化学成分有关键影响,这些物质又是建造下一代恒星的原材料。

超新星爆发时,爆发与坍塌同时进行,坍塌作用使核心处的物质压缩得更为密实。理论分析证明,电子简并态不足以抗住大坍塌和大爆炸的异常高压,处在这么巨大压力下的物质,电子都被挤压到与质子结合成为中子简并态,密度达到10亿吨/立方厘米。由这种物质构成的天体叫做中子星。一颗与太阳质量相同的中子星半径只有大约10千米。

从理论上推算,中子星也有质量上限,最大不能超过大约3倍太阳质量。如果在超新星爆发后核心剩余物质还超过大约3倍太阳质量,中子简并态也抗不住所受的压力,只能继续坍缩下去。最后这团物质收缩到很小的时候,在它附近的引力就大到足以使运动最快的光子也无法摆脱它的束缚。因为光速是现知任何物质运动速度的极限,连光子都无法摆脱的天体必然能束缚住任何物质,所以这个天体不可能向外界发出任何信息,而且外界对它探测所用的任何媒介包括光子在内,一贴近它就不可避免地被它吸进去。它本身不发光并吞下包括辐射在内的一切物质,就象一个漆黑的无底洞,所以这种特殊的天体就被称为黑洞。黑洞有很多奇特的性质,对黑洞的研究在当代天文学及物理学中有重大的意义。

科学家发现,在木星和土星的表面散放出来的能量比它们所吸收的能量要多,这就意味着木星和土星也可以发光,只是它们发出的是远红外线而不是可见光而已。

当然还需自己了解,如想知道得更详细的话请你看一下有关书籍!采纳我吧!^_^^_^

会,原因如下:

由炽热气体组成的、能自己发光的球状或类球状天体离地球最近的恒星是太阳其次是半人马座比邻星,它发出的光到达地球需要422年,晴朗无月的夜晚,在一定的地点一般人用肉眼大约可以看到 3,000多颗恒星借助于望远镜,则可以看到几十万乃至几百万颗以上估计银河系中的恒星大约有一、二千亿颗恒星并非不动,只是因为离开我们实在太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体,叫作恒星

测定恒星距离最基本的方法是三角视差法,先测得地球轨道半长径在恒星处的张角(叫作周年视差),再经过简单的运算,即可求出恒星的距离这是测定距离最直接的方法但对大多数恒星说来,这个张角太小,无法测准所以测定恒星距离常使用一些间接的方法,如分光视差法、星团视差法、统计视差法以及由造父变星的周光关系确定视差,等等(见天体的距离)这些间接的方法都是以三角视差法为基础的

恒星的亮度常用星等来表示恒星越亮,星等越小在地球上测出的星等叫视星等;归算到离地球10秒差距处的星等叫绝对星等使用对不同波段敏感的检测元件所测得的同一恒星的星等,一般是不相等的目前最通用的星等系统之一是U(紫外)B(蓝)、V(黄)三色系统(见测光系统'" class=link>测光系统);B和V分别接近照相星等和目视星等二者之差就是常用的色指数太阳的V=-2674等,绝对目视星等M=+483等,色指数B-V=063,U-B=012由色指数可以确定色温度

恒星表面的温度一般用有效温度来表示,它等于有相同直径、相同总辐射的绝对黑体的温度恒星的光谱能量分布与有效温度有关,由此可以定出O、B、A、F、G、K、M等光谱型(也可以叫作温度型)温度相同的恒星,体积越大,总辐射流量(即光度)越大,绝对星等越小恒星的光度级可以分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次称为超巨星、亮巨星、巨星、亚巨星、主序星(或矮星)、亚矮星、白矮星太阳的光谱型为G2V,颜色偏黄,有效温度约5,770KA0V型星的色指数平均为零,温度约10,000K恒星的表面有效温度由早O型的几万度到晚M型的几千度,差别很大

恒星的真直径可以根据恒星的视直径(角直径)和距离计算出来常用的干涉仪或月掩星方法可以测出小到0001的恒星的角直径,更小的恒星不容易测准,加上测量距离的误差,所以恒星的真直径可靠的不多根据食双星兼分光双星的轨道资料,也可得出某些恒星直径对有些恒星,也可根据绝对星等和有效温度来推算其真直径用各种方法求出的不同恒星的直径,有的小到几公里量级,有的大到10公里以上

只有特殊的双星系统才能测出质量来,一般恒星的质量只能根据质光关系等方法进行估算已测出的恒星质量大约介于太阳质量的百分之几到120倍之间,但大多数恒星的质量在01~10个太阳质量之间恒星的密度可以根据直径和质量求出,密度的量级大约介于10克/厘米(红超巨星)到 10~10克/厘米(中子星)之间

恒星表面的大气压和电子压可通过光谱分析来确定元素的中性与电离谱线的强度比,不仅同温度和元素的丰度有关,也同电子压力密切相关电子压与气体压之间存在着固定的关系,二者都取决于恒星表面的重力加速度,因而同恒星的光度也有密切的关系(见恒星大气理论)

根据恒星光谱中谱线的塞曼分裂(见塞曼效应)或一定波段内连续谱的圆偏振情况,可以测定恒星的磁场太阳表面的普遍磁场很弱,仅约1~2高斯,有些恒星的磁场则很强,能达数万高斯白矮星和中子星具有更强的磁场

化学组成 与在地面实验室进行光谱分析一样,我们对恒星的光谱也可以进行分析,借以确定恒星大气中形成各种谱线的元素的含量,当然情况要比地面上一般光谱分析复杂得多多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等但也有一部分恒星大气的化学组成与太阳大气不同,例如沃尔夫-拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)在金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强但是,这能否归结为某些元素含量较多,还是一个问题

理论分析表明,在演化过程中,恒星内部的化学组成会随着热核反应过程的改变而逐渐改变,重元素的含量会越来越多,然而恒星大气中的化学组成一般却是变化较小的

物理特性的变化 观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间的推移发生周期的、半规则的或无规则的变化这种恒星叫作变星变星分为两大类:一类是由于几个天体间的几何位置发生变化或恒星自身的几何形状特殊等原因而造成的几何变星;一类是由于恒星自身内部的物理过程而造成的物理变星

几何变星中,最为人们熟悉的是两个恒星互相绕转(有时还有气环或气盘参与)因而发生变光现象的食变星(即食双星)根据光强度随时间改变的“光变曲线”,可将它们分为大陵五型、天琴座β(渐台二)型和大熊座W型三种几何变星中还包括椭球变星(因自身为椭球形,亮度的变化是由于自转时观测者所见发光面积的变化而造成的)、星云变星(位于星云之中或之后的一些恒星,因星云移动,吸光率改变而形成亮度变化)等可用倾斜转子模型解释的磁变星,也应归入几何变星之列

物理变星,按变光的物理机制,主要分为脉动变星和爆发变星两类脉动变星的变光原因是:恒星在经过漫长的主星序阶段以后(见赫罗图),自身的大气层发生周期性的或非周期性的膨胀和收缩,从而引起脉动性的光度变化理论计算表明脉动周期与恒星密度的平方根成反比因此那些重复周期为几百乃至几千天的晚型不规则变星、半规则变星和长周期变星都是体积巨大而密度很小的晚型巨星或超巨星周期约在1~50天之间的经典造父变星和周期约在,005~15天之间的天琴座RR型变星(又叫星团变星),是两种最重要的脉动变星观测表明,前者的绝对星等随周期增长而变小(这是与密度和周期的关系相适应的),因而可以通过精确测定它们的变光周期来推求它们自身以及它们所在的恒星集团的距离,所以造父变星又有宇宙中的“灯塔”或“量天尺”之称天琴座RR型变星也有量天尺的作用

还有一些周期短于03天的脉动变星 (包括'" class=link>盾牌座型变星、船帆座AI型变星和型变星'" class=link>仙王座型变星等),它们的大气分成若干层,各层都以不同的周期和形式进行脉动,因而,其光度变化规律是几种周期变化的迭合,光变曲线的形状变化很大,光变同视向速度曲线的关系也有差异盾牌座δ型变星和船帆座AI型变星可能是质量较小、密度较大的恒星,仙王座β型变星属于高温巨星或亚巨星一类

爆发变星按爆发规模可分为超新星、新星、矮新星、类新星和耀星等几类超新星的亮度会在很短期间内增大数亿倍,然后在数月到一、二年内变得非常暗弱目前多数人认为这是恒星演化到晚期的现象超新星的外部壳层以每秒钟数千乃至上万公里的速度向外膨胀,形成一个逐渐扩大而稀薄的星云;内部则因极度压缩而形成密度非常大的中子星之类的天体最著名的银河超新星是中国宋代(公元1054年)在金牛座发现的“天关客星”现在可在该处看到著名的蟹状星云,其中心有一颗周期约33毫秒的脉冲星一般认为,脉冲星就是快速自转的中子星

新星在可见光波段的光度在几天内会突然增强大约9个星等或更多,然后在若干年内逐渐恢复原状1975年8 月在天鹅座发现的新星是迄今已知的光变幅度最大的一颗光谱观测表明,新星的气壳以每秒500~2,000公里的速度向外膨胀一般认为,新星爆发只是壳层的爆发,质量损失仅占总质量的千分之一左右,因此不足以使恒星发生质变有些爆发变星会再次作相当规模的爆发,称为再发新星

矮新星和类新星变星的光度变化情况与新星类似,但变幅仅为2~6个星等,发亮周期也短得多它们多是双星中的子星之一,因而不少人的看法倾向于,这一类变星的爆发是由双星中某种物质的吸积过程引起的

耀星是一些光度在数秒到数分钟间突然增亮而又很快回复原状的一些很不规则的快变星它们被认为是一些低温的主序前星

还有一种北冕座 R型变星,它们的光度与新星相反,会很快地突然变暗几个星等,然后慢慢上升到原来的亮度观测表明,它们是一些含碳量丰富的恒星大气中的碳尘埃粒子突然大量增加,致使它们的光度突然变暗,因而也有人把它们叫作碳爆变星

随着观测技术的发展和观测波段的扩大,还发现了射电波段有变化的射电变星和X射线辐射流量变化的X射线变星等

结构和演化 根据实际观测和光谱分析,我们可以了解恒星大气的基本结构一般认为在一部分恒星中,最外层有一个类似日冕状的高温低密度星冕它常常与星风有关有的恒星已在星冕内发现有产生某些发射线的色球层,其内层大气吸收更内层高温气体的连续辐射而形成吸收线人们有时把这层大气叫作反变层,而把发射连续谱的高温层叫作光球其实,形成恒星光辐射的过程说明,光球这一层相当厚,其中各个分层均有发射和吸收光球与反变层不能截然分开太阳型恒星的光球内,有一个平均约十分之一半径或更厚的对流层在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同能量传输在光球层内以辐射为主,在对流层内则以对流为主

对于光球和对流层,我们常常利用根据实际测得的物理特性和化学组成建立起来的模型进行较详细的研究我们可以从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等在恒星的中心,温度可以高达数百万度乃至数亿度,具体情况视恒星的基本参量和演化阶段而定在那里,进行着不同的产能反应一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应这个过程很长,是恒星生命中最长的阶段氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星,并有可能发生脉动那些内部温度上升到近亿度的恒星,开始发生氦碳循环在这些演化过程中,恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”(见恒星的形成和演化)

关于恒星内部结构和演化后期的高密阶段的情况,主要是根据理论物理推导出来的,这还有待于观测的证实和改进关于由热核反应形成的中微子之谜,理论预言与观测事实仍相去甚远这说明原有的理论尚有很多不完善的地方(见中微子天文学)因此,揭开中微子谜,对研究恒星尤其是恒星的内部结构和演化很有帮助

我们首先来看恒星的一生:

恒星的诞生

在星际空间普遍存在着极其稀薄的物质,主要由气体和尘埃构成。它们的温度约10~100K,密度约10-24~10-23g/cm3,相当于1cm3中有1~10个氢原子。星际物质在空间的分布并不是均匀的,通常是成块地出现,形成弥漫的星云。星云里3/4质量的物质是氢,处于电中性或电离态,其余约是氦以及极少数比氦更重的元素。在星云的某些区域还存在气态化合物分子,如氢分子、一氧化碳分子等。如果星云里包含的物质足够多,那么它在动力学上就是不稳定的。在外界扰动的影响下,星云会向内收缩并分裂成较小的团块,经过多次的分裂和收缩,逐渐在团块中心形成了致密的核。当核区的温度升高到氢核聚变反应可以进行时,一颗新恒星就诞生了。'

主序星

恒星以内部氢核聚变为主要能源的发展阶段就是恒星的主序阶段。处于主序阶段的恒星称为主序星。主序阶段是恒星的青壮年期,恒星在这一阶段停留的时间占整个寿命的90%以上。这是一个相对稳定的阶段,向外膨胀和向内收缩的两种力大致平衡,恒星基本上不收缩也不膨胀。恒星停留在主序阶段的时间随着质量的不同而相差很多。质量越大,光度越大,能量消耗也越快,停留在主序阶段的时间就越短。例如:质量等于太阳质量的15倍、5倍、1倍、02倍的恒星,处于主序阶段的时间分别为一千万年、七千万年、一百亿年和一万亿年。

目前的太阳也是一颗主序星。太阳现在的年龄为46亿多年,它的主序阶段已过去了约一半的时间,还要50亿年才会转到另一个演化阶段。与其他恒星相比,太阳的质量、温度和光度都大概居中,是一颗相当典型的主序星。主序星的很多性质可以从研究太阳得出,恒星研究的某些结果也可以用来了解太阳的某些性质。

红巨星与红超巨星

当恒星中心区的氢消耗殆尽形成由氦构成的核球之后,氢聚变的热核反应就无法在中心区继续。这时引力重压没有辐射压来平衡,星体中心区就要被压缩,温度会急剧上升。中心氦核球温度升高后使紧贴它的那一层氢氦混合气体受热达到引发氢聚变的温度,热核反应重新开始。如此氦球逐渐增大,氢燃烧层也跟着向外扩展,使星体外层物质受热膨胀起来向红巨星或红超巨星转化。转化期间,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不升高反而会下降。其原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍然可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度虽可能增长,表面温度却会下降。质量高于4倍太阳质量的大恒星在氦核外重新引发氢聚变时,核外放出来的能量未明显增加,但半径却增大了好多倍,因此表面温度由几万开降到三、四千开,成为红超巨星。质量低于4倍太阳质量的中小恒星进入红巨星阶段时表面温度下降,光度却急剧增加,这是因为它们外层膨胀所耗费的能量较少而产能较多。

预计太阳在红巨星阶段将大约停留10亿年时间,光度将升高到今天的好几十倍。到那时侯,地面的温度将升高到今天的两三倍,北温带夏季最高温度将接近100℃。

大质量恒星的死亡

大质量恒星经过一系列核反应后,形成重元素在内、轻元素在外的洋葱状结构,其核心主要由铁核构成。此后的核反应无法提供恒星的能源,铁核开始向内坍塌,而外层星体则被炸裂向外抛射。爆发时光度可能突增到太阳光度的上百亿倍,甚至达到整个银河系的总光度,这种爆发叫做超新星爆发。超新星爆发后,恒星的外层解体为向外膨胀的星云,中心遗留一颗高密天体。

金牛座里著名的蟹状星云就是公元1054年超新星爆发的遗迹。超新星爆发的时间虽短不及1秒,瞬时温度却高达万亿K,其影响更是巨大。超新星爆发对于星际物质的化学成分有关键影响,这些物质又是建造下一代恒星的原材料。

超新星爆发时,爆发与坍塌同时进行,坍塌作用使核心处的物质压缩得更为密实。理论分析证明,电子简并态不足以抗住大坍塌和大爆炸的异常高压,处在这么巨大压力下的物质,电子都被挤压到与质子结合成为中子简并态,密度达到10亿吨/立方厘米。由这种物质构成的天体叫做中子星。一颗与太阳质量相同的中子星半径只有大约10千米。

从理论上推算,中子星也有质量上限,最大不能超过大约3倍太阳质量。如果在超新星爆发后核心剩余物质还超过大约3倍太阳质量,中子简并态也抗不住所受的压力,只能继续坍缩下去。最后这团物质收缩到很小的时候,在它附近的引力就大到足以使运动最快的光子也无法摆脱它的束缚。因为光速是现知任何物质运动速度的极限,连光子都无法摆脱的天体必然能束缚住任何物质,所以这个天体不可能向外界发出任何信息,而且外界对它探测所用的任何媒介包括光子在内,一贴近它就不可避免地被它吸进去。它本身不发光并吞下包括辐射在内的一切物质,就象一个漆黑的无底洞,所以这种特殊的天体就被称为黑洞。黑洞有很多奇特的性质,对黑洞的研究在当代天文学及物理学中有重大的意义。

科学家发现,在木星和土星的表面散放出来的能量比它们所吸收的能量要多,这就意味着木星和土星也可以发光,只是它们发出的是远红外线而不是可见光而已

我们首先来看恒星的一生:

恒星的诞生

在星际空间普遍存在着极其稀薄的物质,主要由气体和尘埃构成。它们的温度约10~100K,密度约10-24~10-23g/cm3,相当于1cm3中有1~10个氢原子。星际物质在空间的分布并不是均匀的,通常是成块地出现,形成弥漫的星云。星云里3/4质量的物质是氢,处于电中性或电离态,其余约是氦以及极少数比氦更重的元素。在星云的某些区域还存在气态化合物分子,如氢分子、一氧化碳分子等。如果星云里包含的物质足够多,那么它在动力学上就是不稳定的。在外界扰动的影响下,星云会向内收缩并分裂成较小的团块,经过多次的分裂和收缩,逐渐在团块中心形成了致密的核。当核区的温度升高到氢核聚变反应可以进行时,一颗新恒星就诞生了。'

主序星

恒星以内部氢核聚变为主要能源的发展阶段就是恒星的主序阶段。处于主序阶段的恒星称为主序星。主序阶段是恒星的青壮年期,恒星在这一阶段停留的时间占整个寿命的90%以上。这是一个相对稳定的阶段,向外膨胀和向内收缩的两种力大致平衡,恒星基本上不收缩也不膨胀。恒星停留在主序阶段的时间随着质量的不同而相差很多。质量越大,光度越大,能量消耗也越快,停留在主序阶段的时间就越短。例如:质量等于太阳质量的15倍、5倍、1倍、02倍的恒星,处于主序阶段的时间分别为一千万年、七千万年、一百亿年和一万亿年。

目前的太阳也是一颗主序星。太阳现在的年龄为46亿多年,它的主序阶段已过去了约一半的时间,还要50亿年才会转到另一个演化阶段。与其他恒星相比,太阳的质量、温度和光度都大概居中,是一颗相当典型的主序星。主序星的很多性质可以从研究太阳得出,恒星研究的某些结果也可以用来了解太阳的某些性质。

红巨星与红超巨星

当恒星中心区的氢消耗殆尽形成由氦构成的核球之后,氢聚变的热核反应就无法在中心区继续。这时引力重压没有辐射压来平衡,星体中心区就要被压缩,温度会急剧上升。中心氦核球温度升高后使紧贴它的那一层氢氦混合气体受热达到引发氢聚变的温度,热核反应重新开始。如此氦球逐渐增大,氢燃烧层也跟着向外扩展,使星体外层物质受热膨胀起来向红巨星或红超巨星转化。转化期间,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不升高反而会下降。其原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍然可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度虽可能增长,表面温度却会下降。质量高于4倍太阳质量的大恒星在氦核外重新引发氢聚变时,核外放出来的能量未明显增加,但半径却增大了好多倍,因此表面温度由几万开降到三、四千开,成为红超巨星。质量低于4倍太阳质量的中小恒星进入红巨星阶段时表面温度下降,光度却急剧增加,这是因为它们外层膨胀所耗费的能量较少而产能较多。

预计太阳在红巨星阶段将大约停留10亿年时间,光度将升高到今天的好几十倍。到那时侯,地面的温度将升高到今天的两三倍,北温带夏季最高温度将接近100℃。

大质量恒星的死亡

大质量恒星经过一系列核反应后,形成重元素在内、轻元素在外的洋葱状结构,其核心主要由铁核构成。此后的核反应无法提供恒星的能源,铁核开始向内坍塌,而外层星体则被炸裂向外抛射。爆发时光度可能突增到太阳光度的上百亿倍,甚至达到整个银河系的总光度,这种爆发叫做超新星爆发。超新星爆发后,恒星的外层解体为向外膨胀的星云,中心遗留一颗高密天体。

金牛座里著名的蟹状星云就是公元1054年超新星爆发的遗迹。超新星爆发的时间虽短不及1秒,瞬时温度却高达万亿K,其影响更是巨大。超新星爆发对于星际物质的化学成分有关键影响,这些物质又是建造下一代恒星的原材料。

超新星爆发时,爆发与坍塌同时进行,坍塌作用使核心处的物质压缩得更为密实。理论分析证明,电子简并态不足以抗住大坍塌和大爆炸的异常高压,处在这么巨大压力下的物质,电子都被挤压到与质子结合成为中子简并态,密度达到10亿吨/立方厘米。由这种物质构成的天体叫做中子星。一颗与太阳质量相同的中子星半径只有大约10千米。

从理论上推算,中子星也有质量上限,最大不能超过大约3倍太阳质量。如果在超新星爆发后核心剩余物质还超过大约3倍太阳质量,中子简并态也抗不住所受的压力,只能继续坍缩下去。最后这团物质收缩到很小的时候,在它附近的引力就大到足以使运动最快的光子也无法摆脱它的束缚。因为光速是现知任何物质运动速度的极限,连光子都无法摆脱的天体必然能束缚住任何物质,所以这个天体不可能向外界发出任何信息,而且外界对它探测所用的任何媒介包括光子在内,一贴近它就不可避免地被它吸进去。它本身不发光并吞下包括辐射在内的一切物质,就象一个漆黑的无底洞,所以这种特殊的天体就被称为黑洞。黑洞有很多奇特的性质,对黑洞的研究在当代天文学及物理学中有重大的意义。

科学家发现,在木星和土星的表面散放出来的能量比它们所吸收的能量要多,这就意味着木星和土星也可以发光,只是它们发出的是远红外线而不是可见光而已。http://zhidaobaiducom/question/5152058html

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1147192.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-13
下一篇2023-09-13

发表评论

登录后才能评论

评论列表(0条)

    保存