上古卷轴5远古科技火箭图纸在哪里

上古卷轴5远古科技火箭图纸在哪里,第1张

任务地点貌似是随机的,我随到的是去一个名为“拉得巴尔”的矮人遗迹找图纸,图纸在遗址一个不大重要的箱子里,由于有任务指针,所以跟着走就是了,你的没有任务指针吗?没有的话看任务介绍,会有地点的,然后,然后这个是个阵营支线,所以图纸一般就在一个不大重要的箱子里,只能慢慢翻了奥对了,如果看不到任务指针可以旅行去索瑟姆(龙裔DLC那个岛)看看,都没有就代码或读档吧!

声音比较大的一般是用固体燃料,国外有模友制作过,某宝无售。制作复杂,造价很高,需要大量专业设备和知识。困难较大。还有一种是用类似压缩气体的玩具,声音不大,可以去网上找找图纸,自己试制。比如可乐瓶火箭。

神舟十二号火箭飞船组合体的顶端有一个很明显的 “尖尖” 。但细心的朋友会发现,之前咱们发射的“天和”核心舱和“天舟”二号货运飞船, 都没有这个“尖尖”

这个“尖顶”究竟有什么玄机?如果你看一看几年前的神舟十一号载人飞船,你会发现它也有这个“尖顶”。

这个“尖顶”一般只用在载人航天上,它的名字叫做 “逃逸塔” ,是航天员保命的“护身符”。

逃逸塔曾经救下了在苏联和俄罗斯飞船上的4名宇航员。而美国之前放弃了逃逸塔,但却搭上了7条宇航员的人命

现在的人类航天仍然完全依赖火箭,而火箭从来都是最危险工程项目之一。有的时候,它是人类强有力的工具,但有的时候,它就是一个装满燃料的大炮仗。一旦在发射过程中发生倾倒等事故,火箭本身和它所要运载的所有东西,将全部付之一炬。

随着人类 科技 水平的提高,火箭的安全性也逐渐升高。现在世界主流火箭平均的失败率在2%到4%左右。对于一般的太空运输而言,这个数字已经很低了。但是如果载人,这个2%的失败率则完全无法接受,这相当于100次载人航天,平均就要有两次要死人。

现在全世界拥有载人航天能力的国家,全部都会把保障“航天员”的生命安全放在首位。这首先当然是出于人道主义。而另一方面, 宇航员几乎就是各国航天事业最贵重的“资产”

火箭炸了,卫星毁了,都没有太大关系,只要技术在,重新生产并没有太大问题。但航天员则是万里挑一的, 国家选拔培养一个航天员所需要的花费是百亿级别的 。而更重要的,是培养航天员所需要的花费的时间。所以任何国家都不会拿航天员去冒火箭2%的风险。

在这样的环境下,“逃逸塔”诞生了。

逃逸塔安装在载人飞船火箭的顶部,并装有固体火箭发动机。从航天员进入飞船开始,一旦检测到火箭倾斜过大等可能造成火箭毁灭的紧急情况, 逃逸塔便会触发,启动发动机,带着飞船迅速脱离火箭本体 ,避免火箭爆炸时将载人飞船吞没。

脱离危险区后,飞船启动着陆程序,把宇航员安全送回地面。

由于火箭发射事故大部分都发生在点火起飞和低空飞行阶段,当火箭已正常飞出大气层后,事故风险大幅降低,逃逸塔便失去了作用。此时逃逸塔会与火箭飞船分离,以降低负载。

大部分时候,逃逸塔仅仅是作为保命的后备手段。到现在为止,人类进行的载人航天已经有好几百次了,而逃逸塔真正发挥作用只有3次。

1983年9月27日,苏联的联盟T10a飞船正准备发射,宇航员已进入飞船。在发射前倒数第90秒时,火箭助推器增压氮气管路的一个阀门失效,造成一台火箭发动机突然点火,结果引发整个火箭在发射台上爆炸!好在逃逸塔工作正常,检测到事故后立即带着飞船飞离发射台,两名宇航员得以幸存。

还有一次就发生在三年前。2018年10月11日,俄罗斯联盟MS-10飞船发射升空,其上载有一名美国宇航员和一名俄罗斯宇航员。在火箭升空后的第119秒,距离地面50km左右,四个助推器在分离过程中,有一个助推器分离不正常,并撞上了火箭芯级,造成火箭倾斜并关机。逃逸塔紧急逃生程序启动,两名宇航员在经历了6个G的过载后最终生还。

还有一次是美国人搞得,1961年4月25日美国 水星计划 飞船升空(注:水星计划是当时美国给首批载人航天计划起的名字,并不是要探测水星)。火箭在发射20秒之后失控,在第42秒开始自毁,它的逃逸塔运行正常,带着飞船分离,虽然飞船里只有一个假人,并没有真的宇航员。

“逃逸塔”作为保命措施还是比较可靠的,但是很遗憾,美国在航天技术革新的过程中,一度放弃了“逃逸塔”, 而这个决定让美国人付出了血的代价。

美国人在水星计划取得成功之后,又开始了 双子星计划 (注,这个计划当然也不是为了 探索 双子座,而是美国的双人航天计划)。这个时候,美国人不如苏联人踏实稳重的特点就显现出来了。

双子星计划的载人航天飞船都没有逃逸塔,取而代之的是宇航员的弹射座椅,宇航员在事故时可以弹射出舱,跳伞逃生。当然了,这东西只能在低空使用。如果在几十公里的高空弹射出舱,就只有死路一条了。

这么设计的一个原因是,逃逸塔太重,取消逃逸塔就可以减少额外的发射负载。

但是很幸运,双子星计划的所有载人飞船都成功了,没有出现火箭事故。而自此,美国人对逃逸装备逐渐开始忽视,这种忽视延续到了美国后来研发的 航天飞机 上。

最初航天飞机的设计是包含用于逃逸的固体火箭发动机的,但还是为了减重,航天飞机的逃逸装备被无情取消了。美国人认为,他们的航天飞机安全性已经非常高了,所以没必要搞什么逃逸塔之类的逃逸装备。

然而,广袤的宇宙没有像眷顾双子星计划那样,再一次眷顾航天飞机。

1986年,美国挑战者号航天飞机在发射后第73秒时,助推器发射故障,火箭爆炸。没有任何逃逸装备的挑战者号只能跟着火箭一起解体爆炸。7名宇航员殉职。

血的代价并没有促使NASA给剩余航天飞机加装逃逸装备。美国剩下的那几架航天飞机就这样一直对付了17年。在2003年,哥伦比亚号事故又有7名宇航员殉职之后。美国人再也受不了这种安全风险极大的航天方式了。2011年,美国全部航天飞机退役,美国再次回到了飞船 逃逸装备的路子上来。

中国的载人航天一直是走飞船的发展路径,经过二十多年的发展,中国神舟飞船的可靠性和成功率已经走在了世界前列。 从神舟五号,到现在的神舟十二号,已经把17人次的航天员送上了太空。

而每一次,中国航天的“逃逸塔”都在默默地保护着我们的航天斗士们。祝愿我们的神舟十二号三位航天员能够圆满完成任务,并安全回家。

请你在评论区写下你对中国航天的祝愿和期待,也请你帮我点个赞支持一下,我是@四角切圆 ,关注我了解更多世界大事,咱们下期再见。#全能创作家#

土星5号运载火箭(Saturn V),又译农神五号,亦称为月球火箭,是美国国家航空航天局(NASA)在阿波罗计划和天空实验室计划两项太空计划中使用的多级可抛式液体燃料火箭。土星5号运载火箭是仅次于苏联能源号运载火箭的推力第二大运载火箭。在1967年-1973年间共发射了13枚“土星5号”运载火箭,它们保持着完美的发射记录。共有9枚“土星5号”运载火箭将载人的“阿波罗”号宇宙飞船送上月球轨道。土星5号”运载火箭的生产线于1970年关闭。“土星5号”的最后一次发射是在1973年,这次发射将“天空实验室”空间站送入了近地轨道。

基本资料:

所属国家/组织:美国

生产单位(S-IC):波音公司

生产单位(S-II):北美人航空公司

生产单位(S-IVB):道格拉斯飞行器公司

整体组装地点:飞行器装配大楼(Audlo Video Bridging)

首飞:1967年11月9日

发射场:肯尼迪航天中心

发射台编号:LC-39A(除阿波罗10号以外)、LC-39B(阿波罗10号)

起飞推力:34020千牛

参数列表

第一级

一级火箭发动机点火顺序:首先中央发动机点火,随后周围相对的发动机以300毫秒的间隔点火。

一级火箭发动机的五台发动机所需的液氧和煤油分别由一台液氧泵和一台煤油泵提供,其中液氧泵的流量为每秒24 811加仑,煤油泵的流量为每秒15 741加仑。液氧泵的工作温度为-185℃,煤油泵的工作温度为15℃

液氧泵和煤油泵由一台55 000马力的涡轮机提供动力,涡轮泵的工作温度为650℃

第二级

第三级

运载能力

近地轨道:119000千克

月球轨道:45000千克

发射纪录

   

  

NASA成立以来那些著名的航天器

1959 - 1963 水星计划 (Project Mercury)水星计划的目的是验证载人航天的可行性,并抢在俄国人之前把宇航员送上太空(近地轨道)。一共六次任务,完成了首次载人航天飞行、首次近地轨道绕行和首次超过一天的任务。

(水星计划六次载人发射的场景拼图,可见所使用火箭的不同。)

2  196155 Mercury-Redstone 3 / Freedom 7 -第一位美国宇航员:发射升空的水星计划 Freedom 7 飞船,载着航天员 Alan Shepard 完成了美国首次载人航天飞行。飞船完成了时长 15 分钟的亚轨道飞行,达到了 188 km 的远地点高度。

(发射时的场景)

3  1961721 Mercury-Redstone 4 / Liberty Bell 7 - 第二位升空的美国宇航员:设计与前一次任务相同的 Liberty 7 飞船,载着 Gus Grissom(之后丧命于 Apollo 1 任务,后文有提到)完成了第二次亚轨道飞行。返回落海时舱门意外打开,海水瞬间涌入,Gus 险些丧命不过被直升机救起。

(升空前的 Gus Grissom 和他的飞船)

4  1962220 Mercury-Atlas 6 / Friendship 7 - 首位完成近地轨道绕地飞行的美国宇航员:后来当上了俄亥俄州参议员的宇航员 John Glenn 乘 Friendship 7 飞船完成了美国人的首次近地轨道绕地飞行(俄罗斯人的首次是 Yuri Gagarin 在 1961412 完成的,绕地一圈),一共 3 圈。

(升空前的 John Glenn 和他的飞船)

5  1962912 "We choose to go to the Moon":肯尼迪在莱斯大学演讲,提出要在 1970 年到来之前完成登月。

"We choose to go to the moon We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too"  

- John F Kennedy

6  1963 - 1966 双子座计划(Project Gemini)<双子座计划的目的是在确定了登月的目标后,验证其可行性。一共十次任务,完成了轨道交会、太空对接、出舱行走等多种登月所必备的技术的可行性验证和试验。

(双子座计划使用飞船的结构示意图 )

7  196563 - 196567 Gemini 4 - 美国宇航员的首次太空行走:宇航员 James McDivitt 和 Ed White 乘双子座 4 号飞船登上太空,并由 Ed White 完成美国宇航员的首次太空行走,时长 22 分钟。

由另一位宇航员 James MvDicitt 记录下的 Ed White 出舱行走的情景(从双子座计划,NASA 开始在太空任务中使用哈苏相机,成像质量更好)

8  1965124 - 19651218 Gemini 7 & Gemini 6A - 首次轨道会合:Gemini 6A 任务原计划由宇航员 Wally Schirra 与 Thomas Stafford 操作双子座 6 号飞船和无人目标飞船进行对接,但是目标飞船发射失败,迫使任务改为和载有宇航员 Frank Borman 和 Jim Lovell 的双子座 7 号飞船进行轨道会合试验,同时确定宇航员在太空生存 2 周的可能性。

(会和后从双子座 7号飞船拍到的双子座 6 号飞船)

9  1966316 - 1966317 Gemini 8 - 首次太空对接:宇航员 Neil Armstrong 和 David Scott 乘双子座 8 号飞船完成与目标飞船的轨道会合后,完成首次太空对接。

(在双子座 8 号飞船中看到的对接目标飞船)

10  1961 - 1972 阿波罗计划 (Apollo program)<阿波罗计划在 1969 年完成了人类首次登月的壮举,实现了肯尼迪设下的目标。总共 11 次载人任务,登月 6 次,共有 12 位宇航员踏上月球表面。原定 10 次登月,有一次失败(阿波罗 13 号),最后三次(阿波罗 18、19 和 20 号)被取消。

阿波罗计划中使用的 Apollo 飞船 和 土星 5(Saturn V)火箭可以说是当时美国举全国之力(阿波罗计划总耗资 239 亿美元,相当于现在的约 1000 亿美元)在短短的几年时间内设计、制造、试验完成的。

(阿波罗飞船在火箭前段整流罩内的示意图)

最前端的是逃逸塔,在发射阶段一旦出现问题,逃逸塔火箭启动将下面的指挥舱(Command Module)带离土星火箭。指挥舱,也是返回舱,是三位宇航员大部分时间所待的地方。与指挥舱连接在一起的是服务舱(Service Module),搭载引擎和燃料、氧气等。下面是登月艇(Lunar Module),土星火箭完成最后一次点火,将飞船送入地月转移轨道后,连为一体的指挥舱与服务舱(Command/Service Module)将会和载有登月艇的火箭分离,旋转 180 度,再和它对接,将登月艇从火箭里 “抽” 出来,完成这个高难度动作后,就可以飞向月球了。登月时,指挥(Commander)和登月舱驾驶员(Lunar Module Pilot)乘登月舱在月球表面着陆。指挥舱驾驶员(Command Module Pilot)在指挥舱中,留在绕月轨道上,等待登月完成后和升空的登月舱会合对接后返回地球。进入大气层之前,月岩样品等被转移至指挥舱,抛弃登月舱和服务舱。随后指挥舱带着三位宇航员重返大气层。

(阿波罗 15 号的指挥/服务舱,由登月舱宇航员拍摄)

登月艇由两部分组成:下半部分是返回时留在月球表面的下降级(Descent Stage),包括着陆下降时用的反推引擎及燃料,和要留在月球表面的科学实验仪器等,在后期的任务中所用的月球车也是放在这个舱里;上半部分是返回时的上升级(Ascent Stage),也有一个引擎,当它点火时,将下面的下降级作为发射台(这也是高难度动作…)。

(阿波罗 16 号的登月舱)

土星火箭高达 110 米,重 3000 吨,其中燃料就有 2500 吨,第一级的五台 F-1 引擎可以产生 3400 吨的推力,可以将 45 吨重的阿波罗飞船送往月球(很多现代火箭的近地轨道运载能力都远低于这个数字)。它是人类有史以来所制造的最大、最重、推力最强劲、运载能力最大(值得一提的是,中国研发中的长征-9 火箭的设计运载能力超过了土星火箭)的火箭。

(从发射架拍到的阿波罗 11 号飞船起飞的场景)

11  1967127 Apollo 1 - 三位宇航员葬身火海:原定于 1967 年 2 月 21 日发射的 AS-204 任务,在之前的一次例行发射演练中,由于座舱失火,导致三名宇航员 Gus Grissom、Ed White 和 Roger Chaffee 丧生,其中前两人都是参加过水星计划和双子座计划的资深宇航员(前面均有提到)。导致起火的原因是座舱中充满了比大气压压力要大的纯氧,同时舱盖是向内开的,以保证不会意外打开。结果电火花造成起火后,火势迅速蔓延,同时三位宇航员无法打开舱盖,最后导致惨剧。

(被烧毁的指挥舱)

12  19681221 - 19681227 Apollo 8 - 人类首次绕月飞行:阿波罗 8 号飞船搭载宇航员 Frank Borman、Jim Lovell 和 William Anders 在历史上首次离开近地轨道,飞向月球。飞船绕月 10 圈,共 20 小时。

阿波罗 8 号宇航员拍摄到的历史上首张地球全景照片(近地轨道距离地球太近,无法拍到完整的地球)

13  1969716 - 1969724 - 人类首次登月:在 8 年之前阿波罗计划启动的时候,NASA 甚至连可以把宇航员送上太空的火箭都没有,而是在弹道导弹上装个载人舱,改装成了美国最早的载人火箭。短短 8 年之后的 1969 年 7 月 20 日,阿波罗 8 号飞船登月成功,Neil Armstrong 和 Buzz Aldrin 踏上了月球表面,赶在 1970 年到来之前完成了肯尼迪设下的 “1970 年前登月” 的目标。指挥舱驾驶员是 Michael Collins。Neil Armstrong 首先出舱,Buzz Aldrin 随后,两人在月球表面活动了 2 小时 30 分钟。

("That's one small step for a man, one giant leap for mankind" 个人的一小步,人类的一大步。安装在登月艇侧面的电视直播摄像机拍到的即将登上月球的 Neil Armstrong)

Buzz Aldrin 拍摄的自己的脚印(虽然这张照片极为有名,但是本来拍摄的目的其实是用来计算月球土壤的硬度等参数的)

(Neil Armstrong 拍摄的 Buzz Aldrin,从面罩反光中可以看到 Armstrong)

14  1970411 - 1970417 Apollo 13 - 一次成功的失败:成功登月 2 次之后,第三次阿波罗任务遇到了前所未有的困难。在飞向月球途中,一次例行的设备检查使得服务舱的氧气罐发生爆炸,三位宇航员 James Lovell、John Swigert 和 Fred Haise 不得不关闭所有仪器设备,转移到登月舱中,将登月舱作为 “救生艇”,在克服了一个接一个的困难,解决了无数的问题之后,三人平安返回。

(分离后拍到的服务舱,氧气罐爆炸将整个面板炸飞)

15  1971726 - 197187 Apollo 15 - 首次使用月球车:在月球表面蹦蹦跳跳实在不爽,搞个月球车吧!于是 NASA 就搞了个月球车…全重仅 220 kg,还可以折叠塞到登月艇里,比 F1 赛车不知道高到哪里去了。

(史上最贵的车)

16  1973 - 1974 天空实验室计划(Skylab)天空实验室计划是 NASA 的空间站计划,阿波罗计划结束后还剩余三枚土星 V 火箭,NASA 决定把它利用起来,用来发射无人的空间站(实际只有第一次天空实验室任务 SL-1 使用了土星 V 火箭,后续任务都是使用的土星 IB 运载火箭,剩余的两枚土星 V 火箭都躺在博物馆里了…- -),后续任务再将宇航员送到空间站里(和中国的天宫计划类似)。

END

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1047650.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-06
下一篇2023-09-06

发表评论

登录后才能评论

评论列表(0条)

    保存