天秤与金牛??

天秤与金牛??,第1张

金牛座--天秤座

  任何想理解金牛座与天秤座人(现在他们都受制于金星)之间的交往的人,都应该考虑到元素。

  请不要匆忙下结论说属土的金牛座人要比属气的天秤座人虽大得多,而他们双方都会被像白羊座、狮子座、人马座这样炽烈的火焰宫星座烧成灰烬。土地和火焰似乎都要比空气更危险。土地当然比空气重些。火焰自然更具毁灭性。我们都知道一场地震,或是一次火山喷发,将会造成多么大的损失。确实,一团空气(天秤座的本质)轻飘飘而又不断地流向各处,不能造成比金牛座这样土质的实体所造成的损失更大。

  为了洞悉真相,你必须了解物理和化学。空气是生命的主要营养品。我们都需要空气以便呼吸,因此空气是宜人的,当然更是唾手可得、比比皆是的。但你是否知道,根据统计数字,每年空气以这种或那种方式杀死的人,比其他几种元素杀死人的总和还要多?空气可能是不可见的。它可能没有固定的形态,而且似乎不能像土地一样去影响任何东西。然而,如果你曾经在台风侵袭之际,躺卧于南海诸岛的椰子堆中,偿就将体会到事物并不总是它们平时的那个样子。空气尤其如此。天秤座代表着占星术中空气元素的最活跃成份。所以,亲爱的金牛们,天秤座人决不是被动的。不过相对更强硬的个性而言,天秤座人看上去似乎是个容易被击败的对手。天秤座人特别富有魅力,是面带酒窝的漂亮的(或潇洒的)人,有一双明亮而智慧的眼睛;他们的微笑可以温暖人心;他们情绪平静,总是带着温柔而天真的表情——他们的声音使人隐隐联想起瑞士阿尔卑斯山巅教堂的钟声。

  的确,如此文雅、和蔼的人不可能对别人构成危胁。不过这种天秤座平静的态度仅仅是一种轻松的伪装,它使天秤座人锋利矛尖般的聪明和富有逻辑性的思想更具穿透力。天秤座人完全了解白羊座人不成熟的鲁莽、人马座人粗鲁的直率、狮子座人的傲慢——以及金牛座人不可改变的固执——都只不过是通向胜利道路上的障碍。它们对达到一个人的真正目标是有害的——即赢得争论并坚持走自己的路。这些可谓是对天秤座人最终的分析。而且你必须承认,这一推断是对天秤座逻辑的聪明而无可置疑的表白。

  天秤座人不论是男是女,都愿意以传统的金星(阴性的)方式行事,也是完全合乎逻辑的。所有男性的沙文主义者都知道女人是如何甜言蜜语地迷惑对手,使之就范,从而达到自己的目的的。在这方面天秤座男孩也不亚于天秤座的淑女们。

  金牛座人虽也要受金星的支配,但却有很大的保留。金星并不是金牛们真正和天然的主宰。金牛座人只是从天秤座人那里借得金星的指引和影响,因此,虽然金牛们也是金星的温柔、体贴、心肠好等优点,但金星并没有像给天秤座人那样把自己的全部恩惠(比如她和秘密韬略)都传授给他们。这种情况正像是一位女士不会把自己的所有秘密都告诉给每个她所指导和影响的人,而只会告诉给她真正的恋人,那赢得她芳心的男士。

  金牛座的一般男士、女士和孩子性格里普遍有一种惰性,它使得金牛们本能地容忍他(她)们社交圈、办公室、教室或家庭内的各种习惯——顺从社会的惯例和政府的法令。但如果你从多种角度去考察金牛座人,你将会发现他们并不一定是屈从,因为他们想念所有这些人和法令都是正确的。这是由于典型的金牛座人深信忽视惯例或是炫耀法律都会带来麻烦和矛盾——金星告诫金牛们无论如何也要避免这类事情发生。如你所知,金星也同样告诫天秤座人,但这两个星座的人接受和运用这一告诫的方式却不一样。一旦金牛座人被逼急了,他或她是不会缺乏力量和勇气的,绝对不会缺乏。当他们的忍耐到达极限时,任何年龄的金牛,不论是男是女,都会拼命保卫他们的个人原则和他们所爱的人,(你最好相信这点!)但金牛座人不会仅仅为了一件小事去搅得混一池水或去冒险采取什么行动。

  天秤座人却会这样做。他们的标志就是天平的秤盘,永远要保持完全的和谐和正义,他们活着就是为了实现明智的观点或氛定,而不管事情是小是大,如果一场争论即将爆发,典型的金牛座人只会打个呵欠,耸耸肩膀,然后平静地说(用他们那种与天秤座人油腻腻的声音完全不同的圆润柔和的嗓音):发生的事情不论大小都与他们无关——事情太小引不起他们的兴趣,太大又用不着他们认真加以考虑、权衡和判断。所以你可以理解为什么天秤座休睡很多觉了。说他们懒惰是不公平的。每天早上一睁眼,就要考虑应该从床的哪一侧下床才合适——一直到晚上上床睡觉时,还要沉思应该从头上还是从脚下套上睡衣——当你整日忙碌于思考各种各样的问题时,你自然会时时感到有点儿厌烦和筋疲力尽,更不用说会感到紧张不安大多数金牛座人只有在倾听天秤座人诉说他们的全部思虑时才会觉得厌倦和疲惫。对金牛们来讲,那些思虑听起来像是精神错乱的呓语,去做你感觉是对的事情,不要让任何人使你从原有立场上移动分毫——而且让别人闭上嘴。这就是在平滑的硬壳下面,一般的或是典型的金牛座人关于如何作出决定的哲学。对金牛来讲,不断的争论是无用、最浪费时间,因此也是他们所能想象出的最糟糕的游戏。从来没有任何人能够真正赢得一场争论,除非这个人设法睡着,一直睡到争论结束。甚至从来没有人在争论中显得像是胜利了,对吧?

  不对。天秤座人可以。除了那些他们很快就厌烦的争论,在其他一切争论中他们似乎都是胜利者。当你想到金星暗中送给天秤座人的武器时,你就不会对他们的胜利感到奇怪了,那就是魅力、圆滑和酒窝(在他们身上的某些部位也有酒窝,不管他们是否让人看见)。我们说到哪儿了?酒窝,还不机智、奉承、乐观、宁静而镇定的态度、滑润的嗓音、像迸发的阳光肌突然出现在脸上的美妙高雅的微笑。除了上述这些有力武器之外,他们还会在你最想不到的时候,抽出逻辑推理的利剑来偷袭你。对于这种危险,金牛们总是相信他们那种被动的反抗最终能够抵御天秤座的朋友、亲戚、商业伙伴、情人或配偶用语言或用某种身体的动作对他们发起的温和的进攻。

  由天秤座人发起、操纵并最终取胜的同金牛座人的争论,其内容可以包括从政治到宗教的一切事情。

  你必须密切注视和用心倾听天秤座人的谈话。一个忙于支持自己想法的金牛座人顾不上注意天秤座的逻辑,结果会因为他(或她)自己的固执而落人圈套。

  这就是受到6—8日宫型影响的一种相互关系,它意味着对天秤座来说,金牛座代表着(在其他事物之中)用诡计取得秘密的占星术第八宫。当然,天秤座人非常想解开这个秘密,即金牛们处在所有激烈的私人和公开场合的辩论包围之中,是如何设法镇定自若、无动于衷的,是如何不被心灵的创伤所困扰,能象宁静的婴儿一般熟睡到天明,而从来不会因考虑怎样决定一件事失眠——天秤座人则常常因此失眠,常常在仁慈的上帝知道他们确实需要睡个好觉时乃彻夜不眠。

  对金牛座来讲,天秤座代表着服务的占星术第六宫。当然如此。我们初露头角的金牛座科学家不是设法以某种方式让天秤座的神父在巴黎圣母院为他提供走后门儿的服务吗?他说想成为职业足球队员仅仅是开玩笑?当这位金牛出生时,他诞生的太阳是在金牛座,而月亮和命运之星却都在天秤座。

伽马射线天文观测进入到100TeV以上的能段,对于探究天体的物理过程和规律具有重要意义。

那么什么是高能宇宙射线?高能伽马射线是如何产生的?科学家又是如何观测到它的?为什么高能宇宙伽马射线的发现备受关注?

宇宙射线是来自外太空的高能粒子,宇宙射线成分复杂。大约89%的宇宙射线是单纯的质子,10%是氦原子核(即α粒子),还有1%是重元素。伽马射线是宇宙射线的一种,但在其中只占极小的一部分。宇宙射线可大致分为两类:原生宇宙射线和衍生宇宙射线。原生宇宙射线是由宇宙射线源产生,然后成功逃逸到宇宙空间且未与星际物质发生相互作用的粒子流;衍生宇宙射线指的是原生宇宙射线和星际物质作用后产生的各种粒子。

宇宙射线几乎无处不在,影响宇宙射线剂量的主要因素有海拔、纬度、屏蔽等因素。海拔越高、纬度越大,辐射越强。宇宙射线的发现可以追溯到一百多年前。1912年,奥地利物理学家Vector Hess在高空热气球实验中首次发现了宇宙射线。自发现至今,人们研究了宇宙射线的成分、能量分布等性质以及随空间、时间的变化规律。宇宙射线已经发展成为一门独立的学科。但宇宙射线在何处产生?是什么把它加速到如此高的能量?这些依然是宇宙射线物理的核心问题。

千里迢迢“赶”到地球的高能宇宙伽马射线

想必大家都听过粒子加速器,加速器是一种能使带电粒子能量增加的科学装置。目前世界上最大的粒子加速器是位于日内瓦近郊的欧洲大型强子对撞机。这台设备可以将质子加速到65TeV(万亿电子伏特),要知道可见光的能量只有几个电子伏特。而此次西藏羊八井ASgamma实验平台探测到的伽马光子能量在100TeV以上。宇宙加速器远远超过了人类最先进的机器。

西藏羊八井探测到的高能伽马射线来自于蟹状星云。蟹状星云位于金牛座,距离地球大约6500光年,是公元1054年一次明亮的超新星爆发的残骸。在蟹状星云中,最初的爆炸为加速创造了条件。研究人员认为,蟹状星云中高速旋转的脉冲星能够产生超高能量电子(能量来源于磁场),这些电子与周围宇宙微波背景辐射发生“逆康普顿散射”,就会产生100TeV以上的高能伽马射线。伽马射线向外发射,最终到达地球上被探测器探测到。可以推断出,蟹状星云就是“银河系内天然的高能粒子加速器”。

怎么才能“看见”宇宙伽马射线

仅凭肉眼是无法观察到伽马射线的。那要如何才能“看见”它们呢?答案是必须借助探测器才可以。高能的原生宇宙射线进入地球大气后,会在10到15公里的高空和大气中的介质(主要是氧原子核和氮原子核)发生相互作用产生次级粒子、次级粒子继续反应产生更多的粒子,这就是“广延大气簇射”。以广延大气簇射为基础,人们发展了地面阵列探测技术。

西藏羊八井ASgamma实验阵列主要分为地上地下两个部分。地上表面探测阵列使用了近600个闪烁体探测器,分布在65000平方米的区域内(约为150个篮球场的面积);而地下部分则是有效面积为4200平方米的缪子水切伦科夫探测器。表面探测阵列的优势在于视场大,可以进行全天候、大天区的观测。它能够记录次级粒子到达探测器的时间信息、粒子的密度分布和粒子的电荷等信息,从而重建出原生宇宙射线的方向、能量以及成分。

在宇宙射线中,伽马射线所占的比例极小,其他的粒子与大气中的介质反应也会产生次级粒子,这些次级粒子会对探测伽马射线产生干扰。地下缪子水切伦科夫探测器就是为了去除这些干扰。羊八井实验平台所使用的地下缪子水切伦科夫探测器能够剔除9992%的干扰。也正是地下缪子水切伦科夫探测器的存在,使得西藏羊八井ASgamma实验平台成为世界范围内100TeV以上能区最灵敏的伽玛射线天文台,并成功的“看见”100TeV伽玛射线。

1牛顿

他年幼时,曾一面牵牛上山,一面看书,到家后才发觉手里只有一根绳;看书时定时煮鸡蛋结果将表和鸡蛋一齐煮在锅里;有一次,他请朋友到家中吃饭,自己却在实验室废寝忘食地工作,再三催促仍不出来,当朋友把一只鸡吃完,留下一堆骨头在盘中走了以后,牛顿才想起这事,可他看到盘中的骨头后又恍然大悟地说:“我还以为没有吃饭,原来我早已吃过了”。

牛顿不仅对于力学,在其它方面也有很大贡献。在数学方面,他发现了二项式定理,创立了微积分学;在光学方面,进行了太阳光的色散实验,证明了白光是由单色光复合而成的研究了颜色的理论,还发明了反射望远镜。

2阿尔伯特.爱因斯坦

因斯坦小时候,老师让同学们做工艺品,大家做的都很好,只有爱因斯坦拿出的是个很丑陋的小板凳。老师和同学们嘲笑他,说世界上还有比这更丑陋的板凳吗?爱因斯坦说有,他真拿出两个更丑陋的。他说虽然前一个板凳很丑陋,但是比后来两个要好的多。

爱因斯坦除在光电效应、相对论等方面作出举世皆知的杰出贡献外,他关于布朗运动的研究成果,由于对大量无序因子的规律性把握,成为当今最热门的金融数学的基础;他提出的激光受激辐射的概念,在几十年后的今天得到了广泛的应用;他与玻尔进行的论战中提出的EPR佯谬,至今仍是理论物理学和科学哲学界不断探讨的话题……

3 阿基米德

关于阿基米德,流传着这样一段有趣的故事。相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。

后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他去澡堂洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻拖起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得跑了出去,大声喊着“尤里卡!尤里卡!”。(Fureka,意思是“我知道了”)。

他经过了进一步的实验以后来到王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,所以证明了王冠里掺进了其他金属。

他是物理学家、数学家,静力学和流体静力学的奠基人。

4钱学森

在钱学森提出回过后,美国人大为生气,并对他严加看守,甚至施加刑罚

美国人曾经给钱学森一个莫须有的罪名,使他一人前往荒无人烟的小岛,用各种各样的刑罚折磨他,据说半年就少了50斤可是钱学森回国的决心从未动摇,美国人放出话,只要钱学森愿意留在美国,不回中国,就马上给予他最优良的设施,比原来更好,更美的生活,给他更大的荣誉钱学森没有放弃依然意决回国

钱学森(19111211--)应用力学、航天技术和系统工程科学家。生于上海市,原籍浙江省杭州市。1934年毕业于上海交通大学。1936年在美国麻省理工学院获硕士学位。1938年获加州理工大学博士学位。1955年回国。曾任中国力学学会、中国自动化学会、中国系统工程学会、中国宇航学会理事长、名誉理事长等职。现任国防科学技术工业委员会研究员。早年在应用力学和火箭、导弹技术的许多领域都做过开创性的工作。独立研究以及和冯卡门合作研究提出的许多理论,为应用力学、航空工程和火箭导弹技术的发展奠定了基础。回国后长期担任火箭、导弹和卫星研制的技术领导职务,为创建和发展我国的导弹、航天事业作出了杰出贡献。在工程控制论、系统工程和系统科学、思维科学和人体科学以及马克思主义哲学等许多理论领域都进行过创造性研究,作出了重大贡献。1956年获中国科学院自然科学奖一等奖,1985年获国家科技进步奖特等奖,1991年被国务院、中央军委授予“国家杰出贡献科学家”荣誉称号和一级英模奖章。中国科学院院士。1994年当选为中国工程院院士。

5.麦克斯韦

麦克斯韦从小就有很强的求知欲和想象力,爱思考,好提问。据说还在他两岁多的时

候,有一次爸爸领他上街,看见一辆马车停在路旁,他就问:“爸爸,那马车为什么不走

呢?”父亲说:“它在休息。”麦克斯韦又问:“它为什么要休息呢?”父亲随口说了一

句:“大概是累了吧?”“不,”麦克斯韦认真地说,“它是肚子疼!”还有一次,姨妈

给麦克斯韦带来一篮苹果,他一个劲地问:“这苹果为什么是红的?”姨不知道怎么回答

,就叫他去玩吹肥皂泡。谁知他吹肥皂泡的时候,看到肥皂泡上五彩缤纷的颜色,提的问

题反而更多了。上中学的时候,他还提过象“死甲虫为什么不导电”,“活猫和活狗摩擦

会生电吗”等问题。父亲很早就教麦克斯韦学几何和代数。上中学以后,课本上的数学知

识麦克斯韦差不多都会了,因此父亲经常给他开“小灶”,让他带一些难题到学校里去做

。每当同学们欢蹦乱跳地玩的时候,麦克斯韦却进入了数学的乐园,他常常一个人躲在教

室的角落里,或者独自坐在树荫下,入迷地思考和演算着数学难题。

麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一

6法拉第

法拉第1791年9月22日生于萨里郡纽因顿的一个铁匠家庭。13岁就在一家书店当送报和装订书籍的学徒。他有强烈的求知欲,挤出一切休息时间贪婪地力图把他装订的一切书籍内容都从头读一遍。读后还临摹插图,工工整整地作读书笔记;用一些简单器皿照着书上进行实验,仔细观察和分析实验结果,把自己的阁楼变成了小实验室。在这家书店呆了八年,他废寝忘食、如饥似渴地学习。他后来回忆这段生活时说:“我就是在工作之余,从这些书里开始找到我的哲学。这些书中有两种对我特别有帮助,一是《大英百科全书》,我从它第一次得到电的概念;另一是马塞夫人的《化学对话》,它给了我这门课的科学基础。”

法拉第主要从事电学、磁学、磁光学、电化学方面的研究,并在这些领域取得了一系列重大发现。1820年奥斯特发现电流的磁效应之后,法拉第于1821年提出“由磁产生电”的大胆设想,并开始了艰苦的探索。1821年9月他发现通电的导线能绕磁铁旋转以及磁体绕载流导体的运动,第一次实现了电磁运动向机械运动的转换,从而建立了电动机的实验室模型。接着经过无数次实验的失败,终于在1831年发现了电磁感应定律。这一划时代的伟大发现,使人类掌握了电磁运动相互转变以及机械能和电能相互转变的方法,成为现代发电机、电动机、变压器技术的基础。

7 伽利略

有一次,他站在比萨的天主教堂里,眼睛盯着天花板,一动也不动。他在干什么呢?原来,他用右手按左手的脉搏,看着天花板上来回摇摆的灯。他发现,这灯的摆动虽然是越来越弱,以至每一次摆动的距离渐渐缩短,但是,每一次摇摆需要的时间却是一样的。于是,伽利略做了一个适当长度的摆锤,测量了脉搏的速度和均匀度。从这里,他找到了摆的规律。钟就是根据他发现的这个规律制造出来的

、主要贡献

1、对力学的贡献

11科学描述了运动

经院哲学家主要关注的是“终极原因”,所以主要借助于质料、形式、目的、自然位置等模糊概念对运动作因果的和定性的描述,而且把运动分为自然运动和强迫运动,伽利略认为这种描述和分类方法,实际上是把运动的研究引入绝境 他不相信自然运动和强迫运动的区别,他认为应该依据运动的基本特征量———速度对运动进行分类,由此提出了匀速运动和变速运动的分类方法

伽利略对运动基本概念,包括重心、速度、加速度 等都作了详尽研究并给出了严格的数学表达式。尤其是 加速度概念的提出,在力学史上是一个里程碑。有了加 速度的概念,力学中的动力学部分才能建立在科学基础 之上,而在伽利略之前,只有静力学部分有定量的描述。 伽利略曾非正式地提出过惯性定律(见牛顿运动定 律)和外力作用下物体的运动规律,这为牛顿正式提出 运动第一、第二定律奠定了基础。在经典力学的创立上, 伽利略可说是牛顿的先驱。

12 建立落体定律

通过伽利略得出结论,这个规律在自由下落的极限情况下也一定成立 上面得到的结果可以用另一数学形式来表达,即在一定的时间内圆球所走过的总距离与这段时间的平方成正比,或用伽利略自

13 确定惯性定律

惯性定律:匀速运动和静止因为不是强加的,所以永恒 正是这种永恒运动维持着地球以及整个宇宙的井然秩序伽利略还明确指出,物体的速度无须外力维持,但外力可以改变物体运动的速度,即产生加速度,这使得人们得以从亚里士多德的谬论“力是维持物体运动的原因”中解脱出来,从而把动力学的研究引上了正确的方向

14研究抛体运动

在对抛物体的研究中,伽利略用几何方法证明了一个平抛物体可以分解为水平方向和垂直下落两种运动。他证明了在抛物体初速度相同的条件下,抛射角为45度时,射程最远。

15提出相对性原理

伽利略在《对话》中进而写道:“运动作为运动而言,并作为运动在起作用,只是对没有这种运动的物体才存在,在所有具有相等运动的物体中间,运动是不起作用的,而且看上去就仿佛不存在似的”伽利略是在论证地球上的人不能觉察地球的运动时讲这段话的,所以讲的“运动”自然是匀速运动,而匀速运动的体系就是惯性定律能够成立的体系,所以也就是惯性体系,伽利略的这段话精辟地阐述了相对性原理:在惯性系中所做的一切力学实验都不能证明体系本身的运动

16首创科学的研究方法

伽利略关于运动理论的研究工作,采用了一个对近代科学的发展很有效的程序,即对现象的一般观察→提出工作假设→运用数学和逻辑的手段得出特殊推论 →通过物理实验对推论进行检验→对假设进行修正和推广,等等

2、对天文学的贡献

伽利略在传播和捍卫哥白尼天文学中的决定性作用。

1543年,波兰天文学家哥白尼出版了他不朽的著作《天体运动论》,建立了太阳中心学说,这一学说的建立是科学史具有划时代意义的事件,标志着近代科学的开端。但这一学说在当时并未引起广泛的注意。经过布鲁诺特别是伽利略的传播后,情况有了很大的不同。1609年,伽利略用他自己制造的、放大率的呵0倍的天文望远镜观察天天,看到了太阳上有黑子、月球表面有高低不平的现象,木星有四颗卫星,金星有盈亏等等。这些成果直接和间接地证明了哥白尼学说的正确性。

3、科学实验方法的贡献

所谓科学实验,就是人们根据研究的目的,利用科学仪器设备人为地控制、模拟、创造或纯化某种自然现象 过程,排除干扰、突出主要因素,在有利的条件下去研究自然规律的一种科学活动在伽利略的科学生涯中,不仅强调观察和实验的重要性,而且同时强调理性与经验的同等重要,是在经验的基础上,通过理性的数学建构来达到对客观自然界的认识伽利略通过其毕生的努力,创立了科学实验方法

由于伽利略卓有成效的工作和精辟的科学思想,把科学实验方法发展到了一个完

全新的高度,使物理学走上了真正科学的道路,也为近代自然科学系统地、全面地发展,开辟了广阔的前景伽利略把理论和实验紧密而和谐地结合在一起,构成了一套完整的科学研究方法,有力地推动了近代科学的发展正是这种新方法———逻辑推理与科学实验相结合———使物理学摆脱了依靠形而上的思辨、自觉、猜测和定性的议论的状况,走上了坚实的科学的道路,尽管伽利略没有把实验作为理论的唯一支点,但实验还是改变了科学的性质和方向正是在这个意义上,伽利略被称为科学实验方法的创始人和近代科学的奠基人爱因斯坦和英费尔德在

《物理学的进化》一书中曾作了这样的评论:“伽利略的发现以及他所应用的数学的推理方法是人类思想史上最伟大成就之一,而且标志着物理学的真正开端”这个评价,至今对于我们仍有深刻的教益

4、对哲学的贡献

他一生坚持与唯心论和教会的经院哲学作 斗争,主张用具体的实验来认识自然规律,认为经验是理 论知识的源泉。他不承认世界上有绝对真理和掌握真理 的绝对权威,反对盲目迷信。他承认物质的客观性、多 样性和宇宙的无限性,这些观点对发展唯物主义的哲学 具有重要的意义。但由于历史的局限性,他强调只有可 归纳为数量特征的物质属性才是客观存在的

8焦耳

英国著名科学家焦耳从小就很喜爱物理学,他常常自己动手做一些关于电、热之类的实验。

有一年放假,焦耳和哥哥一起到郊外旅游。聪明好学的焦耳就是在玩耍的时候,也没有忘记做他的物理实验。

他找了一匹瘸腿的马,由他哥哥牵着,自己悄悄躲在后面,用伏达电池将电流通到马身上,想试 一试动物在受到电流刺激后的反应。结果,他想看到的反应出现了,马收到电击后狂跳起来,差一点把哥哥踢伤。

尽管已经出现了危险,但这丝毫没有影响到爱做实验的小焦耳的情绪。他和咯咯又划着船来到群山环绕的湖上,焦耳想在这里试一试回声有多大。他们在火枪里塞满了火药,然后扣动扳机。谁知“砰”的一声,从枪口里喷出一条长长的火苗,烧光了焦耳的眉毛,还险些把哥哥吓得掉进湖里。

这时,天空浓云密布,电闪雷鸣,刚想上岸躲雨的焦耳发现,每次闪电过后好一会儿才能听见轰隆的雷声,这是怎么回事?

焦耳顾不得躲雨,拉着哥哥爬上一个山头,用怀表认真记录下去每次闪电到雷鸣之间相隔的时间。

开学后焦耳几乎是迫不及待地把自己做的实验都告诉了老师,并向老师请教。

老师望着勤学好问的焦耳笑了,耐心地为他讲解:“光和声的传播速度是不一样的,光速快而声速慢,所以人们总是想见闪电再听到雷声,而实际上闪电雷鸣是同时发生的。”

焦耳听了恍然大悟。从此,他对学习科学知识更加入迷。通过不断地学习和认真地观察计算,他终于发现了热功当量和能量守恒定律,成为一名出色的科学家

焦耳一生都在从事实验研究工作,在电磁学、热学、气体分子动理论等方面均作出了卓越的贡献。他是靠自学成为物理学家的。

==累死我了~

天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。

利用理论物理方法研究天体的物理性质和过程的一门学科。1859年,基尔霍夫根据热力学规律解释太阳光谱的夫琅和费线,断言在太阳上存在著某些和地球上一样的化学元素,这表明,可以利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质,是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。1917年爱因斯坦用广义相对论分析宇宙的结构,创立了相对论宇宙学。1929年哈勃发现了河外星系的谱线红移与距离间的关系,以后人们利用广义相对论的引力理论来分析有关河外天体的观测资料,探索大尺度上的物质结构和运动,这就形成了现代宇宙学。

从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪老赫歇耳开创恒星天文学,这是天体物理学的孕育时期。

十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。

天体物理学的发展,促使天文观测和研究不断出现新成果和新发现。1859年,基尔霍夫对太阳光谱的吸收线(即夫琅和费谱线)作出科学解释。他认为吸收线是光球所发出的连续光谱被太阳大气吸收而成的,这一发现推动了天文学家用分光镜研究恒星;1864年,哈根斯用高色散度的摄谱仪观测恒星,证认出某些元素的谱线,以后根据多普勒效应又测定了一些恒星的视向速度;1885年,皮克林首先使用物端棱镜拍摄光谱,进行光谱分类。通过对行星状星云和弥漫星云的研究,在仙女座星云中发现新星。这些发现使天体物理学不断向广度和深度发展。

1905年,赫茨普龙在观测基础上将部分恒星分为巨星和矮星;1913年,罗素按绝对星等与光谱型绘制恒星分布图,即赫罗图;1916年,亚当斯和科尔许特发现相同光谱型的巨星光谱和矮星光谱存在细微差别,并确立用光谱求距离的分光视差法。

在天体物理理论方面,1920年,萨哈提出恒星大气电离理论,通过埃姆登、史瓦西、爱丁顿等人的研究,关于恒星内部结构的理论逐渐成熟;1938年,贝特提出了氢聚变为氨的热核反应理论,成功地解决了主序星的产能机制问题。

1929年,哈勃在研究河外星系光谱时,提出了哈勃定律,这极大地推动了星系天文学的发展;1931~1932年,央斯基发现了来自银河系中心方向的宇宙无线电波;四十年代,英国军用雷达发现了太阳的无线电辐射,从此射电天文蓬勃发展起来;六十年代用射电天文手段又发现了类星体、脉冲星、星际分子、微波背景辐射。

1946年美国开始用火箭在离地面30~100公里高度处拍摄紫外光谱。1957年,苏联发射人造地球卫星,为大气外层空间观测创造了条件。以后,美国、西欧、日本也相继发射用于观测天体的人造卫星。现在世界各国已发射数量可观的宇宙飞行器,其中装有各种类型的探测器,用以探测天体的紫外线、x射线、γ射线等波段的辐射。从此天文学进入全波段观测时代。

天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。

太阳是离地球最近的一颗普通恒星。对太阳的研究,经历了从研究它的内部结构、能量来源、化学组成和静态表面结构,到使用多波段电磁辐射研究它的活动现象的过程。太阳风的影响能够为我们直接感受。日地关系密切,所以研究有关地球的科学,必须考虑太阳的因素。

对行星的研究是天体物理学的一个重要方面。近二十年来,对彗星的研究以及对行星际物质的分布、密度、温度、磁场和化学组成等方面的研究,都取得了重要成果。随着空间探测的进展,太阳系的研究又成为最活跃的领域之一。

银河系有一、二千亿颗恒星,其物理状态千差万别。球状体、红外星、天体微波激射源、赫比格一阿罗天体,可能都是从星际云到恒星之间的过渡天体。

特殊恒星更是多种多样:造父变星的光变周期为1~50天,光变幅为01~2个星等;长周期变星的光变周期为90~1000天,光变幅为25~9个星等;天琴座RR型变星的光变周期为005~15天,光变幅不超过1~2个星等;金牛座 T型变星光变不规则,没有固定的周期;新星爆发时抛出大量物质,光度急骤增加几万到几百万倍;有的红巨星的半径比太阳半径大1000倍以上;白矮星的密度为每立方厘米一百公斤到十吨,中子星密度更高达每立方厘米一亿吨到一千亿吨。

各种各样的恒星,为研究恒星的形成和演化规律提供了样品。另外,天体上特殊的物理条件,在地球上往往并不具备,利用天体现象探索物理规律,是天体物理学的重要职能。

通过多年研究,人们对银河系的整体图像以及太阳在银河系中的地位,有了比较正确的认识。银河系的直径为十万光年,厚两万光年。通过对银河系恒星集团的研究,建立和证实了星族和银河系次系等概念。对银河系自转、旋臂结构、银核和银晕也进行了大量研究。

河外星系与银河系属于同一天体层次。星系按形态大致分为五类:旋涡星系、棒旋星系、透镜型星系、椭圆星系、不规则星系。按星系的质量大小,又可分为矮星系、巨星系、超巨星系,它们的质量依次约为太阳的一百万到十亿倍、几百亿倍和万亿倍以上。同银河系一样,星系也由恒星和气体组成三、五个、十来个、几十个以至成百上千个星系组成星系集团,称星系群、星系团。

通过各种观测手段,人们的视野扩展到150亿光年的宇宙“深处“。这就是“观测到的宇宙”,或称为“我们的宇宙”,也就是总星系。

研究表明,宇宙物质由化学元素周期表中近百种化学元素和289种同位素组成。在不同宇宙物质中发现了地球上不存在的矿物和分子。

二百多年来,关于太阳系的起源和演化问题已提出四十多种学说,但至今还没有一个学说被认为是完善的而被普遍接受。近三十年来这方面有了很大进展,目前大多数天文学家赞成的恒星演化学说是所谓的“弥漫说”,但也有少数人认为恒星是由超密物质转化而成的。

用物理学的技术和方法分析来自天体的电磁辐射,可得到天体的各种物理参数。根据这些参数运用物理理论来阐明发生在天体上的物理过程,及其演变是实测天体物理学和理论天体物理学的任务。

除了宇宙线的粒子探测、陨石的实验室分析、宇宙飞行器对太阳系天体的实地采样和分析,以及尚在努力探索中的引力波观测之外,目前关于天体的信息都来自电磁辐射。天体物理仪器的作用是对电磁辐射进行收集定位、变换和分析处理。电磁辐射的收集和定位是由望远镜(包括射电望远镜)来实现的。

从辐射的连续谱可以判断辐射的机制,还可以得知天体的表面温度;从早型星的巴耳末系限上的跳变,可以得知天体的表面压力;由UBV测光系统也可粗略地确定恒星的光度和温度值。从线谱可以获得更多的信息:视向速度、电子温度、电子密度、化学组成、激发温度端流速度。对双星的观测研究,可以得到天体的半径、质量和光度等重要数据。研究脉动变星的光变周期与光度之间的关系,可以确定天体的距离。

辐射转移理论是解释已知天象的有力工具,而且还可以预言尚未观测到的天体和天象。以辐射转移理论为基础建立的恒星大气理论,以热核聚变概念为基础发展起来的元素合成理论、恒星内部结构理论和天体演化理论,乃是理论天体物理学的基础。

理论物理学中的辐射、原子核、引力、等离子体、固体和基本粒子等理论,为研究类星体、宇宙线、黑洞脉冲星、星际尘埃、超新星爆发奠定了基础。

人类对宇宙的认识不断扩大,不仅使人们愈来愈深入地了解宇宙的结构和演化规律,同时也促使物理学在揭示微观世界的奥秘方面取得进展。氮元素就是首先在太阳上发现的,过了二十五年后才在地球上找到。热核聚变概念是在研究恒星能源时提出的。由于地面条件的限制,某些物理规律的验证只有通过宇宙这个“实验室”才能进行。六十年代天文学的四大发现——类星体、脉冲星、星际分子、微波背景辐射,促进了高能天体物理学、宇宙化学、天体生物学和天体演化学的发展,也向物理学、化学、生物学提出了新的课题。

高能天体物理学

high energy astrophysics

天体物理学的一个分支学科。主要任务是研究天体上发生的各种高能现象和高能过程。它涉及的面很广,既包括有高能粒子(或高能光子)参与的各种天文现象和物理过程 ,也包括有大量能量的产生和释放的天文现象和物理过程。最早,高能天体物理学主要限于宇宙线的探测和研究,真正作为一门学科是20世纪60年代后才建立起来的。60年代以后 ,各种新的探测手段应用到天文研究中,一大批新天体、新天象的发现,使高能天体物理学得到了迅速发展。高能天体物理学的研究对象包括类星体和活动星系核、脉冲星、超新星爆发、黑洞理论、X射线源、γ射线源、宇宙线、各种中微子过程和高能粒子过程等等。

此外,在某些天体上,例如类星体和脉冲星等,也有一些高能过程。它们都是高能天体物理学的研究对象。高能天体物理学已经取得一些重要表现在以下几个方面:对于在恒星上可能发生的中微子过程作了开创性的研究,发现光生中微子过程、电子对湮没中微子过程以及等离子体激元衰变中微子过程等,对晚期恒星的演化有重要的影响;对太阳中微子的探测发现实验值与理论值有较大的差距;关于超新星的爆发机制,提出了一种有希望的理论;超新星爆发可能是宇宙线的主要源泉;在宇宙线中探测到一些能量大于 10电子伏的超高能粒子,中国科学院原子能研究所云南站在1972年发现一个可能是质量大于18×10克的荷电粒子;发现星系核的爆发现象和激烈的活动现象;

  金牛座

  4月21~5月21日主宰行星:金星 属性:地相星座

  春天出生的生辰星位或太阳在金牛座的人的特点:

  继充满激情的牧羊座之后,是不轻易浪费自己能量的金牛座。金牛座的人不愿意毫无意义地说教,无缘无故地行动和失去理智激动。你不放任激情,也没有紧迫感,这是一个强烈抑制精神和思想总是按一定尺度运行的人。如果出生时刻的天宫图中有较强的金牛座的影响,那么你会有良好的自卫本能。思想一成不变,比较罗嗦。从积极的意义上看,你的性格平稳、有毅力和耐力,勤劳智慧,富有实干精神。为人处世小心谨慎,感情真诚专一。此外,你有极其敏锐的感官,内心怀有各种欲望。喜欢舒适的生活环境,大自然的壮丽景色、花草和动物。从消极的意义上看,这些优点的背后还隐藏着多疑多虑、嫉妒、悲观失望、沉默寡言、阴郁孤僻的性格特点。你很难改变自己的观念。另外,你固执已见,对事物极易产生偏激和狭隘的看法。

  金牛座的人是一个喜欢按自己的人生哲学走路的人。你不轻易改变自己的生活习惯。固执已见是你性格上的突出特点,同时也是你的主要缺点。平时温文尔雅,一旦受到触怒,你会变得令人望而生畏。金牛座的人家庭观念较强,你把家庭天地作为寄托自己幸福和安居乐业生活的可靠圣殿。你爱孩子胜过一切,并对你们寄予厚望。

  这一座的人对逆境的适应较慢。挫折和失败常能使你意志消沉,甚至你会人为地把自己囚禁在无声的愤怒之中,拒绝与外界的一切接触。一旦境况有所好转,你又会重新振作起来,以空前的工作热情去实现自己的目标。金牛座的人思想趋于保守,但善于理财。当你拥有一定数量的财产,手头从不短缺时,你方能感到坦然自若。经济上,你的现实感非常强,十分善于安排自己的物质和家庭生活。事业上,你也是强者,具有天生的无懈可击的才华。你的成功之路往往是漫长的,但又是确定无疑的,尤其在农业、建筑和商业等行业方面。由于金星或月亮强有力的影响,金牛座的人常常会选择艺术戏剧的生涯。许多歌唱家和戏剧界人士,你们的天宫图都是以金牛座为主的。

  金牛座的男性

  这是一个喜欢安定的生活和具有田园诗盘性格的人。感情节奏的变化比较缓慢,然而一经触发将会身不由已,无法自拔。稳定而持久的生活环境,对你至关重要。你不喜欢素不相识或萍水相逢的人来扰乱你的生活。无论在爱情上,还是在物质上的追求,你都是以可靠和安全作为权衡的主要标准,这甚至是你性格和思想的基础。

  你既是一个多思多虑的人,又是一个不拒绝享乐的人。美味佳肴是你生活中必不可少的伴侣。

  对待婚姻,金牛座的人首先考虑的是,这种结合是否对诸方都有利,喜欢根据对方的家境及其工作能力作为选择的主要条件。因为你需要的是一个既能承担家庭生活的责任,又能帮你料理财政的妻子。你希望美好的爱情中充满佳肴的芳香。你十分欣赏能烧一手好菜的妻子。和谐的爱情生活是你们感情的基础,生理上的平衡在你的生活中占有极其重要的地位。金牛座的人,对新生事物适应较慢,不愿意轻易改变自己的生活习惯。

  家庭和孩子是你生活的中心,是你欢乐和自豪的资本。尤其孩子是你终生夙愿的寄托。

  金牛座的人的性格比较平稳,很少发脾气。不过,一旦发作则非同小可,会使人毛骨悚然。

  与生辰星位在天蝎座的女性会情投意合,但这两个个性很强的人又不常相逢。

  与生辰星位在处女座或魔羯座的女性结为伴侣,生活会充实、和谐和友爱。因为这两个星座的女性在体贴丈夫、管理家务和照顾子女方面各有所长。

  金牛座的女性

  这是一个精力充沛,身体健美、生活欲望强烈的动人的女性。很会按照女人的特点无忧无虑地生活。你颇具魅力,渴望经历爱情生活的全过程:恋爱、结婚、家庭、孩子和美味佳肴。

  更年期以后如遇挫折,你的性格易发生变态,心情抑郁、烦躁,自我意识突出。促使你转而去寻求物质和精神上的安慰。

  金牛座的女性是一个理想的家庭主妇,出色的女主人和精明强干的女经纪人。你能使周围的人都感到快慰,高超的烹饪技术会使你的家人和朋友赞不绝口。此外,这一座的女性还常常是养花能手,你喜欢自己的寓所布满鲜花或茂盛的绿化植物,希望自己的生活环境比其你任何地方都生机盎然。只有当你的生活充满恬静的田园气息,看到自己的孩子茁壮成长时,才会感到是置身在真正的幸福之中。

  金牛座的女性性格偏于内向,经济上喜欢自理。嫉妒心经常折磨着你。然而一旦你确信得到了自己所钟爱的人的真诚的爱,便会成为一个最贤惠、最忠心耿耿的妻子。

  生辰星位在金牛座的男性能弥补你性格上的空白,尽管共同生活中难免会有些磨擦,但和谐的私生活会使你得到精神上的平衡。

  与魔羯座的男性常会志同道合,你们在工作上会互相帮助,在生活上会互相体贴、照顾。

  与处女座的男性结合有助于你建立稳定和幸福的家庭。

  金牛座的儿童

  金牛座的孩子是个慢性子,你做事和想问题时,不要太催促你。否则你会变得消极或固执起来,以至被人误认为愚笨。一旦你步入正轨,情况就大不一样了,你会表现出顽强的刻苦精神。所以,对于这一星座的孩子,关键是要以极大的耐心把你引导到正确的轨道上来。以后,你便会自觉地埋头钻研下去,永不偏离自己的目标。但是,先决条件是要给你充裕的时间,以使你能心平气和!你不喜欢变化,需要有规律的生活节奏和使你感到静谧安然的生活环境。

  金牛座孩子的工艺能力高于智力,平时总是喜欢琢磨和做些小玩意儿,思考些实实在在的问题。你的天赋适合在精工、塑造和园艺等方面去扩展。 这一座的孩子大多都热爱大自然,对田园生活有深厚的感情。赶着牛走在田埂上,是你最渴望的生活意境。从你的发展趋势来看,扎根农村要比固守城市更能发挥出你的才能。

  你理想出路是农业、金融、财产管理、商业、食品、时装加工、大型企业、雕刻艺术、歌唱演员或戏剧。金牛座不同10°内出生的人的基本性格:

  出生日期:4月21日~30日

  性格特征:这是个名副其实的现实主义者,具有持之以恒的精神,适合从事需要顽强毅力和付出长期艰苦努力的工作。思想和情感的变化比较缓慢。这是一个坚持已见,对爱和憎充满绝对意识的人。喜欢舒适安逸的生活,并渴望不断扩大自己的物质财富。感情的信念很深,并在你的一生起着重要作用。

  动力来源:专心致志

  出生日期:5月1日~10日

  性格特征:本能和潜意识常形成巨大的精神力量,支配你的愿望、情感、行动。难能可贵的事业心和实干精神会在物质方面给你带来成功机遇。一般来说,只有涉及到你切身利益时,方会参与其事。

  动力来源:本能

  出生日期:5月11日~21日

  性格特征:雄心勃勃,竭尽全力去为实现自己的目标而奋斗。你经常试图改变自己的自制能力,善于引导和启发别人。现实感很强,但有时忧郁情绪过重,从而使你陷于孤僻和苦闷的境地。

  动力来源:组织

  金牛座出生的著名人士有:列宁、马克思、尼克松、弗洛伊德、巴尔扎克、方达(美国戏剧与**演员)、费尔南德尔(法国喜剧演员)。

  总而言之,金牛座的你:

  注重现实的金牛座的人说:"我具有……"。

  表达爱情的方式:忠心耿耿或不厌其烦。

  是一个:感情丰富的人。

  渴望:感情缠绵和擅长烹任的爱人。

  受骗:当受到性爱吸引时。

  喜欢:到农村和田野中去。

  追求:具有可靠基础的一切。

  弱点:自我意识过强。

  有利条件:坚持不懈。

  不利条件:不爱动。

  假期生活:园艺和烹调。

  开支:购买起居设备和娱乐用品。

  吉祥物:圣甲虫像。

  吉祥金属:铜。

  吉祥宝石:珊瑚。

  吉祥日:星期五。

  吉祥数字:6、15、24、33。

  喜欢的场所:田园生活、草坪、原野和牧场,银行和保险公司。

  吉祥植物:牡丹、锦葵、报春、紫罗兰和野花。

  居住条件:绝对舒适的环境,经久耐用的家具和现代化的厨房设备。

  理想旅居国:爱尔兰、丹麦、澳大利亚和阿根廷。

  中文名:卡尔·弗里德里希·高斯

外文名:Johann Carl Friedrich Gauss

国 籍:德国

出生地:不伦瑞克

出生日期:1777年(丁酉年)04月30日

逝世日期:1855年(乙卯年)02月23日

职  业:数学家、物理学家和天文学家

毕业院校:布伦瑞克学院,哥廷根大学

星  座:金牛座

信  仰:自然神论者

主要成就:证明代数基本定理

代表作品:《算术探索》

德国着名数学家、物理学家、天文学家、大地测量学家。和阿基米德、牛顿、欧拉同享盛誉,是近代数学奠基者之一,18岁时发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯的肖像已经被印在从1989年至2001年流通的10元面值德国马克的纸币上。

  中文名:亨利·庞加莱

外文名:Jules Henri Poincaré

国 籍:法国

出生地:法国南锡

星  座:金牛座

出生日期:1854年4月29日

逝世日期:1912年7月17日

职  业:数学家、天体力学家、科学哲学家

毕业院校:巴黎高等工科学校,巴黎大学

主要成就:创立代数拓扑学,相对论先驱

代表作品:《天体力学新方法》、《科学与假设》、《最后的沉思》

其他重要成就:微分方程,自守函数论,天体力学

亨利·庞加莱(Jules Henri Poincaré)是法国数学家、天体力学家、数学物理学家、科学哲学家,1854年4月29日生于法国南锡,1912年7月17日卒于巴黎。庞加莱的研究涉及数论、代数学、几何学、拓扑学、天体力学、数学物理、多复变函数论、科学哲学等许多领域。他被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。庞加莱在数学方面的杰出工作对20世纪和当今的数学造成极其深远的影响,他在天体力学方面的研究是牛顿以来的第二个伟大的里程碑,他因为对电子理论的研究被公认为相对论的理论先驱。

 您可能也喜欢:

金牛座符号含义详解

金牛最蠢的报复行为

金牛座如何面对挫折

金牛座不能做的职业

虫洞有几种说法

  一是空间的隧道,就像一个球,你要沿球面走就远了但如果你走的是球里的一条直径就近了,虫洞就是直径

  二是黑洞与白洞的联系。黑洞可以产生一个势阱,白洞则可以产生一个反势阱。宇宙是三维的,将势阱看作第四维,那么虫洞就是连接势阱和反势阱的第五维。假如画出宇宙、势阱、反势阱和虫洞的图像,它就像一个克莱因瓶——瓶口是黑洞,瓶身和瓶颈的交界处是白洞,瓶颈是虫洞。

  三是你说的时间隧道,根据爱因斯坦所说的你可以进行时间旅行,但你只能看,就像看**,却无法改变发生的事情,因为时间是线行的,事件就是一个个珠子已经穿好,你无法改变珠子也无法调动顺序

  到现在为止,我们讨论的都是普通“完美”黑洞。细节上,我们讨论的黑洞都不旋转也没有电荷。如果我们考虑黑洞旋转同时/或者带有电荷,事情会变的更复杂。特别的是,你有可能跳进这样的黑洞而不撞到奇点。结果是,旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。

  白洞有可能离黑洞十分远;实际上它甚至有可能在一个“不同的宇宙”--那就是,一个时空区域,除了虫洞本身,完全和我们在的区域没有连接。一个位置方便的虫洞会给我们一个方便和快捷的方法去旅行很长一段距离,甚至旅行到另一个宇宙。或许虫洞的出口停在过去,这样你可以通过它而逆着时间旅行。总的来说,它们听起来很酷。

  但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。首先,虫洞几乎不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。

  还有,即使形成了一个虫洞,它也被认为是不稳定的。即使是很小的扰动(包括你尝试穿过它的扰动)都会导致它坍塌。

  在史瓦西发现了史瓦西黑洞以后,理论物理学家们对爱因斯坦常方程的史瓦西解进行了几乎半个世纪的探索。包括上面说过的克尔解、雷斯勒——诺斯特朗姆解以及后来的纽曼解,都是围绕史瓦西的解研究出来的成果。我在这里将介绍给大家的虫洞,也是史瓦西的后代。

  虫洞在史瓦西解中第一次出现,是当物理学家们想到了白洞的时候。他们通过一个爱因斯坦的思想实验,发现时空可以不是平坦的,而是弯曲的。在这种情况下,我们会十分的发现,如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方是与原来的时空完全垂直的。在不是平坦的宇宙时空中,这种结构就以为着黑洞的视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,叫史瓦西喉,也就是一种特定的虫洞。

  自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质感到好奇。

  我们先来看一个虫洞的经典作用:连接黑洞和白洞,成为一个爱因斯坦——罗森桥,将物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即爱因斯坦——罗森桥)被传送到这个白洞的所在,并且被辐射出去。

  黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的将强,它还是仅仅是一个连通的“宇宙监狱”。

  虫洞不仅可以作为一个连接洞的工具,它还在宇宙的正常时空中出现,成为一个突然出现在宇宙中的超空间管道。

  虫洞没有视界,它有的仅仅是一个和外界的分解面。虫洞通过这个分解面和超空间连接,但是在这里时空曲率不是无限大。就好比在一个在平面中一条曲线和另一条曲线相切,在虫洞的问题中,它就好比是一个四维管道和一个三维的空间相切,在这里时空曲率不是无限大。因而我们现在可以安全地通过虫洞,而不被巨大的引力所摧毁。

虫洞的性质  利用相对论在不考虑一些量子效应和除引力以外的任何能量的时候,我们得到了一些十分简单、基本的关于虫洞的描述。这些描述十分重要,但是由于我们研究的重要是黑洞,而不是宇宙中的洞,因此我在这里只简单介绍一下虫洞的性质,而对于一些相关的理论以及这些理论的描述,这里先不涉及。

  虫洞有些什么性质呢?最主要的一个,是相对论中描述的,用来作为宇宙中的高速火车。但是,虫洞的第二个重要的性质,也就是量子理论告诉我们的东西又明确的告诉我们:虫洞不可能成为一个宇宙的高速火车。虫洞的存在,依赖于一种奇异的性质和物质,而这种奇异的性质,就是负能量。只有负能量才可以维持虫洞的存在,保持虫洞与外界时空的分解面持续打开。当然,狄拉克在芬克尔斯坦参照系的基础上,发现了参照系的选择可以帮助我们更容易或者难地来分析物理问题。同样的,负能量在狄拉克的另一个参照系中,是非常容易实现的,因为能量的表现形式和观测物体的速度有关。这个结论在膜规范理论中同样起到了十分重要的作用。根据参照系的不同,负能量是十分容易实现的。在物体以近光速接近虫洞的时候,在虫洞的周围的能量自然就成为了负的。因而以接近光速的速度可以进入虫洞,而速度离光速太大,那么物体是无论如何也不可能进入虫洞的。这个也就是虫洞的特殊性质之一。

虫洞的自然产生机制

  虫洞的自然产生机制有两种:

  其一,是黑洞的强大引力能;

  其二,是克尔黑洞的快速旋转,其伦斯——梯林效应将黑洞周围的能层中的时空撕开一些小口子。这些小口子在引力能和旋转能的作用下被击穿,成为一些十分小的虫洞。这些虫洞在黑洞引力能的作用下,可以确定它们的出口在那里,但是现在还不可能完全完成,因为量子理论和相对论还没有完全结合。

个人假设

  I、虫洞像河流,通过的物体像船,船顺河而下;

  虫洞体像一个圆柱形磁铁,强力的类磁力线在入口处将通过的物体分解,以波的形式在柱心管道运行,在出口处还原。通过的物体类似一个障碍,造成波的某一部分形变,然后这个形变推移到出口。

  可能还涉及到横波、纵波,波的反射、折射、衍射,物质的不均匀、空间的不规则,如同水中气泡般的宇宙空洞。

虫洞: 旅行家的天堂还是探险者的地狱?

一 星空,最后的前沿

  探索星空是人类一个恒久的梦想。 在晴朗的夜晚, 每当我们仰起头来, 就会看到满天的繁星。 自古以来, 星空以它无与伦比的浩瀚、 深邃、 美丽及神秘激起着人类无数的遐想。 著名的美国科幻电视连续剧《星际旅行》 (Star Trek) 中有这样一句简短却意味无穷的题记: 星空, 最后的前沿 (Space, the final frontier)[注一]。 当我第一次观看这个电视连续剧的时候, 这句用一种带有磁性的话外音念出的题记给我留下了令人神往的印象。 在远古的时候, 人类探索星空的方式是肉眼, 后来开始用望远镜, 但人类迈向星空的第一步则是在一九五七年。 那一年, 人类发射的第一个航天器终于飞出了我们这个蓝色星球的大气层。 十二年后, 人类把足迹留在了月球上。 三年之后, 人类向外太阳系发射了先驱者十号深空探测器。 一九八三年, 先驱者十号飞离了海王星轨道, 成为人类发射的第一个飞离太阳系的航天器[注二]。 从人类发射第一个航天器以来, 短短二十几年的时间里, 齐奥尔科夫斯基所预言的 “人类首先将小心翼翼地穿过大气层, 然后再去征服太阳周围的整个空间” 就成为了现实, 人类探索星空的步履不可谓不迅速。 但是, 相对于无尽的星空而言, 这种步履依然太过缓慢。 率先飞出太阳系的先驱者十号如今正在一片冷寂的空间中滑行着, 在满天的繁星之中, 要经过多少年它才能飞临下一颗恒星呢? 答案是两百万年! 那时它将飞临距离我们六十八光年的金牛座 (Taurus)[注三]。 六十八光年的距离相对于地球上的任何尺度来说都是极其巨大的, 但是相对于远在三万光年之外的银河系中心, 远在两百二十万光年之外的仙女座大星云, 远在六千万光年之外的室女座星系团, 以及更为遥远的其它天体来说无疑是微不足道的。 人类的好奇心是没有边界的, 可是即便人类航天器的速度再快上许多倍, 甚至接近物理速度的上限 - 光速, 用星际空间的距离来衡量依然是极其缓慢的。 那么, 有没有什么办法可以让航天器以某种方式变相地突破速度上限, 从而能够在很短的时间内跨越那些近乎无限的遥远距离呢? 科幻小说家们率先展开了想象的翅膀。

二 旅行家的天堂

  一九八五年, 美国康乃尔大学 (Cornell University) 的著名行星天文学家卡尔 • 萨根 (Carl Sagan) 写了一部科幻小说, 叫做《接触》 (Contact)。 萨根对探索地球以外的智慧生物有着浓厚的兴趣, 他客串科幻小说家的目的之一是要为寻找外星智慧生物的 SETI 计划筹集资金。 他的这部小说后来被拍成了**, 为他赢得了广泛的知名度。 萨根在他的小说中叙述了一个动人的故事: 一位名叫艾丽 (Ellie) 的女科学家收到了一串来自外星球智慧生物的电波信号。 经过研究, 她发现这串信号包含了建造一台特殊设备的方法, 那台设备可以让人类与信号的发送者会面。 经过努力, 艾丽与同事成功地建造起了这台设备, 并通过这台设备跨越了遥远的星际空间与外星球智慧生物实现了第一次接触。 但是, 艾丽与同事按照外星球智慧生物提供的方法建造出的设备究竟利用了什么方式让旅行者跨越遥远的星际空间的呢? 这是萨根需要大胆 “幻想” 的地方。 他最初的设想是利用黑洞。 但是萨根毕竟不是普通的科幻小说家, 他的科学背景使他希望自己的科幻小说尽可能地不与已知的物理学定律相矛盾。 于是他给自己的老朋友, 加州理工大学 (California Institute of Technology) 的索恩 (Kip S Thorne) 教授打了一个电话。 索恩是研究引力理论的专家, 萨根请他为自己的设想做一下技术评估。 索恩经过思考及粗略的计算, 很快告诉萨根黑洞是无法作为星际旅行的工具的, 他建议萨根使用虫洞 (wormhole) 这个概念。 据我所知, 这是虫洞这一名词第一次进入科幻小说中[注四]。 在那之后, 各种科幻小说、 **、 及电视连续剧相继采用了这一名词, 虫洞逐渐成为了科幻故事中的标准术语。 这是科幻小说家与物理学家的一次小小交流结出的果实。 萨根与索恩的交流不仅为科幻小说带来了一个全新的术语, 也为物理学开创了一个新的研究领域。 在物理学中, 虫洞这一概念最早是由米斯纳 (C W Misner) 与惠勒 (J A Wheeler) 于一九五七年提出的, 与人类发射第一个航天器恰好是同一年。 那么究竟什么是虫洞? 它又为什么会被科幻小说家视为星际旅行的工具呢? 让我们用一个简单的例子来说明: 大家知道, 在一个苹果的表面上从一个点到另一个点需要走一条弧线, 但如果有一条蛀虫在这两个点之间蛀出了一个虫洞, 通过虫洞就可以在这两个点之间走直线, 这显然要比原先的弧线来得近。 把这个类比从二维的苹果表面推广到三维的物理空间, 就是物理学家们所说的虫洞, 而虫洞可以在两点之间形成快捷路径的特点正是科幻小说家们喜爱虫洞的原因[注五]。 只要存在合适的虫洞, 无论多么遥远的地方都有可能变得近在咫尺, 星际旅行家们将不再受制于空间距离的遥远。 在一些科幻故事中, 技术水平高度发达的文明世界利用虫洞进行星际旅行就像今天的我们利用高速公路在城镇间旅行一样。 在著名的美国科幻**及电视连续剧《星际之门》 (Stargate,港台译 星际奇兵) 中人类利用外星文明留在地球上的一台被称为 “星际之门” 的设备可以与其它许多遥远星球上的 “星际之门” 建立虫洞连接, 从而能够几乎瞬时地把人和设备送到那些遥远的星球上。 虫洞成为了科幻故事中星际旅行家的天堂。 不过米斯纳与惠勒所提出的虫洞是极其微小的, 并且在极短的时间内就会消失, 无法成为星际旅行的通道。 萨根的小说发表之后, 索恩对虫洞产生了浓厚的兴趣, 并和他的学生莫里斯 (Mike Morris) 开始对虫洞作深入的研究。 与米斯纳和惠勒不同的是, 索恩感兴趣的是可以作为星际旅行通道的虫洞, 这种虫洞被称为可穿越虫洞 (traversable wormhole)。

三 负能量物质

  那么什么样的虫洞能成为可穿越虫洞呢? 一个首要的条件就是它必须存在足够长的时间, 不能够没等星际旅行家穿越就先消失。 因此可穿越虫洞首先必须是足够稳定的。 一个虫洞怎样才可以稳定存在呢? 索恩和莫里斯经过研究发现了一个不太妙的结果, 那就是在虫洞中必须存在某种能量为负的奇特物质! 为什么会有这样的结论呢? 那是因为物质进入虫洞时是向内汇聚的, 而离开虫洞时则是向外飞散的, 这种由汇聚变成飞散的过程意味着在虫洞的深处存在着某种排斥作用。 由于普通物质的引力只能产生汇聚作用, 只有负能量物质才能够产生这种排斥作用。 因此, 要想让虫洞成为星际旅行的通道, 必须要有负能量的物质。 索恩和莫里斯的这一结果是人们对可穿越虫洞进行研究的起点。 索恩和莫里斯的结果为什么不太妙呢? 因为人们在宏观世界里从未观测到任何负能量的物质。 事实上, 在物理学中人们通常把真空的能量定为零。 所谓真空就是一无所有, 而负能量意味着比一无所有的真空具有 “更少” 的物质, 这在经典物理学中是近乎于自相矛盾的说法。 但是许多经典物理学做不到的事情在二十世纪初随着量子理论的发展却变成了可能。 负能量的存在很幸运地正是其中一个例子。 在量子理论中, 真空不再是一无所有, 它具有极为复杂的结构, 每时每刻都有大量的虚粒子对产生和湮灭。 一九四八年, 荷兰物理学家卡什米尔 (Hendrik Casimir) 研究了真空中两个平行导体板之间的这种虚粒子态, 结果发现它们比普通的真空具有更少的能量, 这表明在这两个平行导体板之间出现了负的能量密度! 在此基础上他发现在这样的一对平行导体板之间存在一种微弱的相互作用。 他的这一发现被称为卡什米尔效应。 将近半个世纪后的一九九七年, 物理学家们在实验上证实了这种微弱的相互作用, 从而间接地为负能量的存在提供了证据。 除了卡什米尔效应外, 二十世纪七八十年代以来, 物理学家在其它一些研究领域也先后发现了负能量的存在。 因此, 种种令人兴奋的研究都表明, 宇宙中看来的确是存在负能量物质的。 但不幸的是, 迄今所知的所有这些负能量物质都是由量子效应产生的, 因而数量极其微小。 以卡什米尔效应为例, 倘若平行板的间距为一米, 它所产生的负能量的密度相当于在每十亿亿立方米的体积内才有一个 (负质量的) 基本粒子! 而且间距越大负能量的密度就越小。 其它量子效应所产生的负能量密度也大致相仿。 因此在任何宏观尺度上由量子效应产生的负能量都是微乎其微的。 另一方面, 物理学家们对维持一个可穿越虫洞所需要的负能量物质的数量也做了估算, 结果发现虫洞的半径越大, 所需要的负能量物质就越多。 具体地说, 为了维持一个半径为一公里的虫洞所需要的负能量物质的数量相当于整个太阳系的质量。 如果说负能量物质的存在给利用虫洞进行星际旅行带来了一丝希望, 那么这些更具体的研究结果则给这种希望泼上了一盆无情的冷水。 因为一方面迄今所知的所有产生负能量物质的效应都是量子效应, 所产生的负能量物质即使用微观尺度来衡量也是极其微小的。 另一方面维持任何宏观意义上的虫洞所需的负能量物质却是一个天文数字! 这两者之间的巨大鸿沟无疑给建造虫洞的前景蒙上了浓重的阴影。

四 探险者的地狱

  虽然数字看起来令人沮丧, 但是别忘了当我们讨论虫洞的时候, 我们是在讨论一个科幻的话题。 既然是讨论科幻的话题, 我们姑且把眼光放得乐观些。 即使我们自己没有能力建造虫洞, 或许宇宙间还存在其它文明生物有能力建造虫洞, 就象《星际之门》的故事那样。 甚至, 即使谁也没有能力建造虫洞, 或许在浩瀚宇宙的某个角落里存在着天然的虫洞。 因此让我们姑且假设在未来的某一天人类真的建造或者发现了一个半径为一公里的虫洞。 我们是否就可以利用它来进行星际旅行了呢? 初看起来半径一公里的虫洞似乎足以满足星际旅行的要求了, 因为这样的半径在几何尺度上已经足以让相当规模的星际飞船通过了。 看过科幻**的人可能对星际飞船穿越虫洞的特技处理留有深刻的印象。 从屏幕上看, 飞船周围充斥着由来自遥远天际的星光和辐射组成的无限绚丽的视觉幻象, 看上去飞船穿越的似乎是时空中的一条狭小的通道。 但实际情况远比这种幻想来得复杂。 事实上为了能让飞船及乘员安全地穿越虫洞, 几何半径的大小并不是星际旅行家所面临的主要问题。 按照广义相对论, 物质在通过象虫洞这样空间结构高度弯曲的区域, 会遇到一个十分棘手的问题, 那就是张力。 这是由于引力场在空间各处的分布不均匀所造成的, 它的一种大家熟悉的表现形式就是海洋中的潮汐。 由于这种张力的作用, 当星际飞船接近虫洞的时候, 飞船上的乘员会渐渐感觉到自己的身体在沿虫洞的方向上有被拉伸的感觉, 而在与之垂直的方向上则有被挤压的感觉。 这种感觉便是由虫洞引力场的不均匀造成的。 一开始, 这种张力只是使人稍有不适而已, 但随着飞船与虫洞的接近, 这种张力会迅速增加, 距离每缩小到十分一, 这种张力就会增加约一千倍。 当飞船距离虫洞还有一千公里的时候, 这种张力已经超出了人体所能承受的极限, 如果飞船到这时还不赶紧折回的话, 所有的乘员都将在致命的张力作用下丧命。 再往前飞一段距离, 飞船本身将在可怕的张力作用下解体, 而最终, 疯狂增加的张力将把已经成为碎片的飞船及乘员撕成一长串亚原子粒子。 从虫洞另一端飞出的就是这一长串早已无法分辨来源的亚原子粒子! 这就是星际探险者试图穿越半径为一公里的虫洞将会遭遇的结局。 半径一公里的虫洞不是旅行家的天堂, 而是探险者的地狱。 因此一个虫洞要成为可穿越虫洞, 一个很明显的进一步要求就是: 飞船及乘员在通过虫洞时所受到的张力必须很小。 计算表明, 这个要求只有在虫洞的半径极其巨大的情况下才能得到满足[注六]。 那么究竟要多大的虫洞才可以作为星际旅行的通道呢? 计算表明, 半径小于一光年的虫洞对飞船及乘员产生的张力足以破坏物质的原子结构, 这是任何坚固的飞船都无法经受的, 更遑论脆弱的飞船乘员了。 因此, 一个虫洞要成为可穿越虫洞, 其半径必须远远大于一光年。

五 从科幻到现实

  但另一方面, 一光年用日常的距离来衡量虽然是一个巨大的线度, 用星际的距离来衡量, 却也不算惊人。 我们所在的银河系的线度大约是它的十万倍, 假如在银河系与两百二十万光年外的仙女座大星云之间存在一个虫洞的话, 从线度上讲它只不过是一个非常细小的通道。 那么会不会在我们周围的星际空间中真的存在这样的通道, 只不过还未被我们发现呢? 答案是否定的。 因为半径为一光年的虫洞真正惊人的地方不在于它的线度, 而在于维持它所需的负能量物质的数量。 计算表明, 维持这样一个虫洞所需的负能量物质的数量相当于整个银河系中所有发光星体质量总和的一百倍! 这样的虫洞产生的引力效应将远比整个银河系的引力效应更为显著, 如果在我们附近的星际空间中存在这种虫洞的话, 周围几百万光年内的物质运动都将受到显著的影响, 我们早就从它的引力场中发现其踪迹了。 因此不仅在地球上不可能建造可穿越虫洞, 在我们附近的整个星际空间中都几乎不可能存在可穿越虫洞而未被发现。 这样看来, 我们只剩下一种可能性需要讨论了, 那就是在宇宙的其它遥远角落里是否有可能存在可穿越虫洞? 对于这个问题, 我们也许永远都无法确切地知道结果, 因为宇宙实在太大了。 但是维持可观测虫洞所需的数量近乎于天方夜谭的负能量物质几乎为我们提供了答案。 迄今为止, 人类从未在任何宏观尺度上发现过负能量物质, 所有产生负能量物质的实验方法利用的都是微弱的量子效应。 为了能够维持一个可穿越虫洞, 必须存在某种机制把量子效应所产生的微弱的负能量物质汇集起来, 达到足够的数量。 但是负能量物质可以被汇聚起来吗? 最近十几年来物理学家们在这方面做了一些理论研究, 结果表明由量子效应产生的负能量物质是不可能无限制地加以汇聚的。 负能量物质汇聚得越多, 它所能够存在的时间就会越短。 因此一个虫洞没有负能量物质是不稳定的, 负能量物质太多了也会不稳定! 那么到底什么样的虫洞才能够稳定的呢? 初步的计算表明, 只有线度比原子的线度还要小二十几个数量级的虫洞才是稳定的[注七]! 这一系列结果无疑是非常冷酷的, 如果这些结果成立的话, 存在可穿越虫洞的可能性就基本上被排除了, 所有那些美丽的科幻故事也就都成了镜花水月。 不过幸运 (或不幸) 的是, 上面所叙述的许多结果依据的是目前还比较前沿 - 因而相对来说也还比较不成熟 - 的物理理论。 未来的研究是否会从根本上动摇这些理论, 从而完全推翻我们上面介绍的许多结果, 还是一个未知数。 退一步讲, 即使那些物理理论基本成立, 上面所叙述的许多结果也只是从那些理论推出的近似结果或特例。 比方说, 许多结果假定了虫洞是球对称的, 而实际上虫洞完全可以是其它形状的, 不同形状的虫洞所要求的负能量物质的数量, 所产生张力的大小都是不同的。 所有这些都表明即使那些物理理论真的成立, 我们上面提到的结论也不见得是完全 打开它的方法就是共鸣利用物质间相互吸引原理使两时空虫洞正反两种物质能量互相吸引从而打开它,但这两种能量是光能量与暗能量

太阳系是由受太阳引力约束的天体组成的系统是宇宙中的一个小天体系统,

太阳系的结构可以大概地分为五部分:

31太阳(Sun)

太阳是太阳系的母星,也是最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量,并以辐射的型式,例如可见光,让能量稳定的进入太空。太阳在赫罗图上的位置

太阳在分类上是一颗中等大小的黄矮星,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大与明亮的。恒星是依据赫罗图的表面温度与亮度对应关系来分类的。通常,温度高的恒星也会比较明亮,而遵循此一规律的恒星都会位在所谓的主序带上,太阳就在这个带子的中央。但是,但是比太阳大且亮的星并不多,而比较暗淡和低温的恒星则很多。

太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。

计算太阳内部氢与氦的比例,认为太阳已经完成生命周期的一半,在大约50亿年后,太阳将离开主序带,并变得更大与更加明亮,但表面温度却降低的红巨星,届时它的亮度将是目前的数千倍。

太阳是在宇宙演化后期才诞生的第一星族恒星,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属。)。比氢和氦重的元素是在恒星的核心形成的,必须经由超新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能发展出行星系统的关键,因为行星是由累积的金属物质形成的。

行星际物质

除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风。这条微粒子流的速度为每小时150万公里,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到100天文单位(日球层顶),也就是我们所认知的行星际物质。 太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。

地球的磁场从与太阳风的互动中保护著地球大气层。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。 太阳风和地球磁场交互作用产生的极光,可以在接近地球的磁极(如南极与北极)的附近看见。

宇宙线是来自太阳系外的,太阳圈屏障著太阳系,行星的磁场也为行星自身提供了一些保护。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关,因此宇宙线在太阳系内的变动幅度究竟是多少,仍然是未知的。

行星际物质至少在在两个盘状区域内聚集成宇宙尘。第一个区域是黄道尘云,位于内太阳系,并且是黄道光的起因。它们可能是小行星带内的天体和行星相互撞击所产生的。第二个区域大约伸展在10-40天文单位的范围内,可能是柯伊伯带内的天体在相似的互相撞击下产生的。

32内太阳系

内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径还比木星与土星之间的距离还短。

内行星所有的内行星

四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物,组成表面固体的地壳和半流质的地幔,以及由铁、镍构成的金属核心所组成。四颗中的三颗(金星、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。行星运行在一个平面,朝着一个方向。

水星

水星(Mercury)(04 天文单位)是最靠近太阳,也是最小的行星(0055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊。 水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长。

金星

金星 (Venus)(07 天文单位)的体积尺寸与地球相似(086地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高90倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星,表面的温度超过400°C,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此认为金星的大气是经由火山的爆发获得补充。

地球

地球(Earth)(1 天文单位)是内行星中最大且密度最高的,也是唯一地质活动仍在持续进行中并拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气也于其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈约1天。(太阳并不是总是直射赤道,因为地球围绕太阳旋转时,稍稍有些倾斜。)

火星

火星(Mars)(15 天文单位)比地球和金星小(017地球质量),只有以二氧化碳为主的稀薄大气,它的表面,例如奥林匹斯山有密集与巨大的火山,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。

小行星带

小行星的主带和特洛伊小行星 小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成。

主要的小行星带位于火星和木星轨道之间,距离太阳23至33 天文单位,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。

小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体,但是有几颗小行星,像是灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重分类为矮行星。

小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的,所以至今还没有太空船在穿越时发生意外。

直径在10至10-4 米的小天体称为流星体。

谷神星

谷神星 (Ceres)(277 天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000公里,因此自身的引力已足以使它成为球体。它在19世纪初被发现时,被认为是一颗行星,在1850年代因为有更多的小天体被发现才重新分类为小行星;在2006年,又再度重分类为矮行星。

小行星族

在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大。

在主带中也有彗星,它们可能是地球上水的主要来源。

特洛依小行星的位置在木星的 L4或L5点(在行星轨道前方和后方的不稳定引力平衡点),不过"特洛依"这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。 希耳达族是轨道周期与木星2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。

内太阳系也包含许多“淘气”的小行星与尘粒,其中有许多都会穿越内行星的轨道。

33中太阳系

太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入"外太阳系",虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是"冰"(水、氨和甲烷),不同于以岩石为主的内太阳系。

外行星

所有的外行星 在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。

木星

木星(Jupiter)(52 天文单位),主要由氢和氦组成,质量是地球的318倍,也是其他行星质量总合的25倍。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的四颗,甘尼米德、卡利斯多、埃欧、和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大,是太阳系内最大的卫星。

土星

土星(Saturn)(95 天文单位),因为有明显的环系统而著名,它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星,泰坦和恩塞拉都斯,拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,而且是太阳系中唯一实际拥有大气层的卫星。

天王星

天王星(Uranus)(196 天文单位),是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔、和米兰达。

海王星

海王星(Neptune)(30 天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。

彗星

彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥发性的冰组成。 它们的轨道具有高离心率,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗发和拖曳出由气体和尘粒组成、肉眼就可以看见的彗尾。

短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨周期可以长达数千年。短周期彗星,像是哈雷彗星,被认为是来自柯伊伯带;长周期彗星,像海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,像是克鲁兹族彗星,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。 挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。

半人马群

半人马群是散布在9至30 天文单位的范围内,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体。半人马群已知的最大天体是10199 Chariklo,直径在200至250 公里。第一个被发现的是2060 Chiron,因为在接近太阳时如同彗星般的产生彗发,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续。

34外海王星区

在海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。

柯伊伯带

柯伊伯带,最初的形式,被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带,扩散在距离太阳30至50 天文单位之处。这个区域被认为是短周期彗星——像是哈雷彗星——的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2003 EL61、2005 FY9和厄耳枯斯等,可能都会被归类为矮行星。估计柯伊伯带内直径大于50 公里的天体会超过100,000颗,但总质量可能只有地球质量的十分之一甚至只有百分之一。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。

柯伊伯带大致上可以分成共振带和传统的带两部分,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统的成员则是不与海王星共振,散布在394至477 天文单位范围内的天体。传统的柯伊伯带天体以最初被发现的三颗之一的1992 QB1为名,被分类为类QB1天体。

冥王星和卡戎

冥王星和已知的三颗卫星 目前还不能确定卡戎(Charon)是否应被归类为当前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星-卡戎双星系统。另外两颗很小的卫星尼克斯(Nix)与许德拉(Hydra),则绕着冥王星和卡戎公转。

冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈)。柯伊伯带中有着这种轨道的天体统称为类冥天体。

离散盘

离散盘与柯伊伯带是重叠的,但是向外延伸至更远的空间。离散盘内的天体应该是在太阳系形成的早期过程中,因为海王星向外迁徙造成的引力扰动才被从柯伊伯带抛入反覆不定的轨道中。多数黄道离散天体的近日点都在柯伊伯带内,但远日点可以远至150 天文单位;轨道对黄道面也有很大的倾斜角度,甚至有垂直于黄道面的。有些天文学家认为黄道离散天体应该是柯伊伯带的另一部分,并且应该称为"柯伊伯带离散天体"。

阋神星

阋神星(136199 Eris)(平均距离68 天文单位)是已知最大的黄道离散天体,并且引发了什么是行星的辩论。他的直径至少比冥王星大15%,估计有2,400公里(1,500英里),是已知的矮行星中最大的。阋神星有一颗卫星,阋卫一(Dysnomia),轨道也像冥王星一样有着很大的离心率,近日点的距离是382 天文单位(大约是冥王星与太阳的平均距离),远日点达到976 天文单位,对黄道面的倾斜角度也很大。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1033938.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-05
下一篇2023-09-05

发表评论

登录后才能评论

评论列表(0条)

    保存