为什么概率密度图有界而分布函数没有界?
概率密度函数图形是有“界”的(若无界则不可积,即其分布会不存在),而分布函数图形是无界的。 从数学上看,分布函数F(x)=P(X<=x) 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率。如果在某一x附近取非常小的一个
概率密度函数图形是有“界”的(若无界则不可积,即其分布会不存在),而分布函数图形是无界的。 从数学上看,分布函数F(x)=P(X<=x) 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率。如果在某一x附近取非常小的一个