用高中方法解决初中数学题

用高中方法解决初中数学题,第1张

怎样才能学好数学

★怎样才能学好数学?

要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。

事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。

究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。

由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。

一、数学运算

运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:

①情绪稳定,算理明确,过程合理,速度均匀,结果准确;

②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识

理解和记忆数学基础知识是学好数学的前提。

★什么是理解?

按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。

理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。

★什么是记忆?

一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。

总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。

三、数学解题

学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。

1、如何保证数量?

① 选准一本与教材同步的辅导书或练习册。

② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。

③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。

④每天保证1小时左右的练习时间。

2、如何保证质量?

①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。

②落实:不仅要落实思维过程,而且要落实解答过程。

③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。

四、数学思维

数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。

总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。

很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;

和初中数学相比,高中数学的内容多,抽象性、理论性强,因为不少同学进入高中之后很不适应,特别是高一年级,进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。

高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。

一、指导提高听课的效率是关键。

1、课前预习能提高听课的针对性。

预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

2、听课过程中的科学。

首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。

其次就是听课要全神贯注。

全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。

眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想。

心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。

口到:就是在老师的指导下,主动回答问题或参加讨论。

手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。

若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。

3、特别注意讲课的开头和结尾。

讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

此外还要特别注意老师讲课中的提示。

老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。

最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

二、指导做好复习和总结工作。

1、做好及时的复习。

课完课的当天,必须做好当天的复习。

复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

2、做好单元复习。

学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

3、做好单元小结。

单元小结内容应包括以下部分。

(1)本单元(章)的知识网络;

(2)本章的基本思想与方法(应以典型例题形式将其表达出来);

(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

三、指导做一定量的练习题

有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。

另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。

希望有点帮助。。。

高中时期空间几何问题有时会比较复杂,涉及到证明线面之间的垂直平行的关系或者求解点/线/面之间的距离,用传统证明方式有时需要有很强的空间概念,要考虑到很多共点共面的问题,必要时会借助一些辅助线。而借助解析几何的概念会使得空间几何数字化,简化解题流程及思考过程。例如证明不共面的AB与CD垂直时,传统办法会借助一些定理,例如直线与一个面垂直那么这条线就与这个面上所有的直线垂直等等,而利用解析几何时,只需构建合适的空间坐标系,然后计算AB向量×CD向量=0即可,无需考虑AB或CD所在平面。

问题一:怎样学习高中解析几何? 首先,解析几何的知识是必须有的,只有知识体系的建立才可以让你更了解这哥知识的内容第二,要学会充分利用初中的平面几何知识,解析几何说到底就一个计算,它本身就是为了解决平面几何问题而建立的体系,考得就是谁算得准,算得快,所以你要尽量减少计算的步骤和时间,才能更快更准,这就需要平面几何的知识,有时候用上了,题目会变的非常简单第三,就是熟方法,常用解决点的轨迹的几种方法一定要熟还有,有的时候做题,不要太追求一定的思路,回归的定义和本质也是是很好的方法,最朴素的就是最好的第四,多做题,做题是你熟悉这些方法和技巧的最快途径,不一定要大量练习计算,更多的是练习技巧当然,基础的训练是不能少的

相信你找到学习的方法,一定会得到好成绩的!

问题二:怎样学好高中的解析几何??? 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

如何学好数学2

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。

有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中>>

问题三:怎样学好高中的解析几何 解析几何题难 不过一半多的分是得得到的 公示和定义 一定要记牢 还有他会有一定的模式 你按着做就好了 多做一点题 练得多了就熟悉了 做题也只有那几个方法

问题四:高中解析几何怎么才能学好 1不要害怕解析几何的计算繁琐,多自己动手做,纸上得来终觉浅

2牢记解析几何的公式

3多总结一些小结论

问题五:如何学好解析几何,特别是圆锥曲线 以下是我个人总结的一点经验,你可以借鉴一下!

一、圆锥曲线题型的主要特点:一般来说解题思路比较简单,但运算量较为繁琐因此要想攻破这类题型必须加强以下几个方面的能力:一是掌握解题基本的方法和常用公式;二是提高元算能力和总结一些简便运算的技巧;三是理解和运用主要的几大数学思想(即数形结合思想、函数思想、分类讨论思想、转化思想和整体替换思想);四是掌握一些常用的设点技巧(这是减少元算量的关键)

二、高考试题中该类题型的分布位置:一般放在第四道大题的位置它一般分为三个小题:第一小题一般是求点的轨迹(4分);第二和第三小题是其它类型的题(如求定点、定直线、定距离、最值等问题),分别占5分(设直线的方程是要注意斜率是否存在)

三、圆锥曲线的重点理论知识:(1)求动点轨迹的的基本方法:1、定义法(也称为直接法或几何法):根据圆锥曲线的定义求即可(注意:此法应优先考虑)2、间接法:先设出动点的坐标,在根据已知条件寻找几个等量关系,再化简即可;3、交轨法:转化为其它曲线的交点轨迹;4、参数法:先用参数表示动点坐标的表达式,再消去参数即可(2)椭圆的第二定义:若一动点到定点的距离与到定直线的距离的比小于1,则该动点的轨迹为椭圆(该比值其实就是离心率,该定点为焦点,该直线为准线)(双曲线的第二定义与此类似,只需把比值改为大于1即可)(3)椭圆的焦半径公式:AF1=a-ex,AF2=a+ex;椭圆的焦三角形的面积公式:SpF1F2=b^2tan@/2;双曲线的焦半径公式:AF1=ex-a,AF2=ex+a;双曲线的焦三角形的面积公式:SPF1F2=b^2/tan@/2(其中A为椭圆或双曲线上的点,x为A点的横坐标,e为离心率,@为F1pF2的角度)(4)若过抛物线y^2=2px的焦点的直线与抛物线交于A和B两点,设A(x1,y1)B(x2,y2),则有x1x2=p^2/4,y1y2=-p^2(以上的结论最好自行推导一下)(5)当椭圆的焦三角形pF1F2的顶点p与短轴的端点重合时,角F1pF2的角度最大(6)解圆锥曲线问题时常用的几个重要公式(务必要理解并牢记它,这是不会做这类题也可以拿到分的关键):1、韦达定理:x1+x2=-b/a,x1x2=c/a

2、弦长公式:d=(1+k^2)((x1+x2)^2-4x1x2)的值的算术平方根

3、中点弦公式(其作用主要是建立中点的坐标与直线斜率的关系):1、直线与椭圆(x^2/a^2+y^2/b^2=1)相交则k=(y1-y2)/(x1-x2)=-b^2x0/(a^2y0)

2、直线与双曲线(x^2/a^2-y^2/b^2=1)相交则k=b^2x0/(a^2y0) 3、直线与抛物线(y^2=2px)相交则k=p/y0

(其中A(x1,y1)和B(x2,y2)为两曲线的交点,而(x0,y0)为A和B的中点,k为直线的斜率) 圆锥曲线的题型大致可以分为以下几类:1、定点问题

2、定直线问题 3、最大最小值问题 4、定长或定距离问题 5、参数范围问题 6、与向量相结合的题型

(至于这几种题型的具体解题方法先让你自己通过练习大量的题来进行归纳总结,暂时不直接给出给你,因为只有通过你自己的思考再总结出来的东西理解才更加深刻,运用才更自如)(当然圆锥曲线的其它题型与方法还有很多,要靠你自己去挖掘,这里不便给出,也不可能给出,因为数学的题型是千变万化的,但也是非>>

问题六:如何学好解析几何和立体几何,具体方法 解析几何属于三角函数和平面直角坐标系范畴。

立体几何是指的的三维平面内的,

把基础学好应该不难。

基础:三角函数 坐标系 平面几何

问题七:学好高中数学解析几何对智商要求高不高,怎么学好 就是拼智商~

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3607101.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-03-12
下一篇2024-03-12

发表评论

登录后才能评论

评论列表(0条)

    保存