排列组合的公式是什么?

排列组合的公式是什么?,第1张

排列组合的计算公式:

排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!

例如:

A(4,2)=4!/2!=43=12

C(4,2)=4!/(2!2!)=43/(21)=6

除法运算

1、除以一个不等于零的数,等于乘这个数的倒数。

2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。

注意:

零不能做除数和分母。

有理数的除法与乘法是互逆运算。

1、从n个不同元素取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A表示。2、从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号C表示。

排列数:

从n个中取m个排一下,有n种,即n!/!组合数:从n个中取m个。

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。

排列的定义:

从n个不同元素中,任取m个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

其他排列与组合公式从n个元素中取出m个元素的循环排列数=A/m=n!/m!。n个元素被分成k类,每类的个数分别是n1,n2,nk这n个元素的全排列数为n!/。k类元素,每类的个数无限,从中取出m个元素的组合数为C。

排列组合公式a和c计算方法:

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列a与组合c计算方法

计算方法如下:

排列A=n×=n!/!

组合C=P/P=n!/m!!;

例如A=4!/2!=43=12

C=4!/=43/=6

排列组合计算公式如下:

排列数从n个中取m个排一下,有n(n-1)(n-2)……(n-m+1)种,即n!/(n-m)!组合数:从n个中取m个,相当于不排,就是n!/[(n-m)!m!]。

排列组合a和c的区别

排列数就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合数是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(m,n)表示。

A是排列,C是组合 。

A(3,2)=3×2,

写的时候等号左边3是下标,2是上标,等号右边从下标3开始,连续乘上标2个数字,每个数字都比前面小1。

C(3,2)=(3×2)÷(2×1)=3,或者C(3,2)=3!÷2!÷(3-2)!=(3×2)÷(2×1)÷1=3,

写的时候等号左边3是下标,2是上标,等号右边的分子从下标3开始,连续乘上标2个数字,每个数字都比前面小1,分母从上标2开始,连续乘上标2个数字,每个数字都比前面小1;或者用上标的阶乘,除以下标的阶乘,再除以上标与下标的差的阶乘。

扩展资料

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。

排列、组合、二项式定理公式口诀:

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

参考资料。排列组合

高中排列组合公式是:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。

例如C(4,2)=4!/(2!2!)=43/(21)=6,C(5,2)=C(5,3)。

排列组合c计算方法:C是从几个中选取出来,不排列,只组合。 

C(n,m)=n(n-1)(n-m+1)/m!  

例如c53=543÷(321)=10,再如C(4,2)=(4x3)/(2x1)=6。

注意事项:

1、不同的元素分给不同的组,如果有出现人数相同的这样的组,并且该组没有名称,则需要除序,有几个相同的就除以几的阶乘,如果分的组有名称,则不需要除序。

2、隔板法就是在n个元间的n-1个空中插入若干个隔板,可以把n个元素分成(n+1)组的方法,应用隔板法必须满足这n个元素必须互不相异,所分成的每一组至少分得一个元素,分成的组彼此相异。

3、对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其他元素。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3122339.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-06
下一篇2024-02-06

发表评论

登录后才能评论

评论列表(0条)

    保存