关于2009年的狮子座流星雨的详细情况

关于2009年的狮子座流星雨的详细情况,第1张

2008年12月17日 11:53来源:中国彗星流星资讯网中国公众科技网

美国加州理工学院与国家航空航天局天文学家说,2009年将有强烈的狮子座流星雨出现。他们的预报依据是该流星雨2008年11月17日的爆发,这次爆发打破了几年来的"狮子座流星雨宁静期"的说服,这预示着明年11月狮子座流星雨有更为强烈的活动。马歇尔太空飞行中心的Bill Cooke说:"我们预计,2009年11月17日狮子座流星雨最多每小时有500颗流星。"

2008年狮子座流星雨出乎意外的高强度活动使得科学家们提高了对2009年流量的预期。根据Vaubaillon等人修正后的预报,受1466年回归物的影响,2009年狮子座流星雨的峰值将出现在18日5时43分(北京时间,下同;可能会后延30-60分钟),极大天顶流量约为每小时500颗。 MSFC的Cooke等人用独立模型进行计算,得出的峰值预测也是18日5时34分-5时44分左右,预测流量也能达到"次暴雨级别"(流星暴雨的定义为极大天顶流量每小时1000颗)。

2008年11月17日,地球穿过了55P/坦普尔-塔特尔彗星的碎片流。多砂的肮脏碎片流是狮子座流星雨的母体彗星在500多年前的1466年留下的。几乎没有人认为,古老的碎片可以产生强的流星雨,但它确实产生了。亚洲与欧洲的观测者每小时最多记录下了100颗彗星。 Vaubaillon以一小时的精度预言了这次穿越。他解释说:"我有计算狮子座流星雨残片流的计算机程序。它可以很好地预报穿越,哪怕是穿过这次这样古老的残片流。" 2008年11月17日的爆发证明,1466年的残片流富含产生流星的碎片,这为2009年更好的表现铺了路。

2009年11月17日,地球将再次穿过1466年的残片流,但这次与中心的距离更近。 Vaubaillon基于2008年观测到的流星数目,估计了即将到来的表现强度:在世界时21:43前后的几个小时,每小时可以看到500颗或者更多的狮子座流星雨。这一时间段对亚洲的观测者显然有利,不过专家并没有排除在北美看到漂亮流星表现的可能。 许多读者会记得1998至2002年间壮观的狮子座流星雨。最佳年份(1999年至2001年)每小时可以看到最多3000颗狮子座的流星。

2009年的表现不会如此强烈。相反,如果预报是准确的,明年的情况类似于1998年的狮子座流星雨,那将是一次"半暴"级别的壮丽天象,产生它的碎片流可以追溯到1333年。那一古老的残片流富含小块团块,产生了大量火流星。许多观测者认为,1998年的狮子座流星雨是他们看到过的最好的一次,仅次于2001年。

2009年的情况会是与1998年那次相同的吗?Vaubaillon预计了类似的流星数目,但是认为火流星较少。如果模型是正确的,1466年的残片流中会含有大量的尘埃,但是团块并不很多,因此火流星的数目会减小。乐观的一面是,明年11月17日是新月,因此没有什么会阻碍流星群发挥出全部的潜力。请广大天文爱好者在日历上做好记号,并继续关注以后的相关报道。

您好!

应该称为流星。

流星是分布在星际空间的细小物体和尘粒,叫做流星体。它们飞入地球大气层,跟大气摩擦发生了光和热,最后被燃尽成为一束光,这种现象叫流星。(如果没有燃尽就是陨星)。通常所说的流星指这种短时间发光的流星体。俗称贼星。 流星2 [liúxīng]①古代兵器,在铁链的两端各系一个铁锤。②杂技的一种,在长绳的两端拴上盛着水的碗或火球,用手摆动绳子,使水碗或火球在空中飞舞。大约928% 的流星的主要成分是二氧化硅(也就是普通岩石),57% 是铁和镍,其他的流星是这三种物质的混合物。

太阳系内除了太阳、八大行星及其卫星、小行星、彗星外,在行星际空间还存在着大量的尘埃微粒和微小的固体块,它们也绕着太阳运动。在接近地球时由于地球引力的作用会使其轨道发生改变,这样就有可能穿过地球大气层。或者,当地球穿越它们的轨道时也有可能进入地球大气层。由于这些微粒与地球相对运动速度很高(11-72公里/秒),与大气分子发生剧烈摩擦而燃烧发光,在夜间天空中表现为一条光迹,这种现象就叫流星,一般发生在距地面高度为80-120公里的高空中。流星中特别明亮的又称为火流星。造成流星现象的微粒称为流星体,所以流星和流星体是两种不同的概念。

流星包括单个流星(偶发流星)、火流星和流星雨三种,比绿豆大一点的流星体进入大气层就能形成肉眼可见亮度的流星。

流星体的质量一般很小,比如产生5等亮度流星的流星体直径约05cm,质量006毫克。肉眼可见的流星体直径在01-1cm之间。它们与大气的相对速度与流星体进入地球的方向有关,如果与地球迎面相遇,速度可超过每秒70公里,如果是流星体赶上地球或地球赶上流星体而进入大气,相对速度为每秒10余公里。但即使每秒10公里的速度也已高出子弹出枪膛速度的10倍,足以与大气分子、原子碰撞、摩擦而燃烧发光,形成流星而为我们看到。大部分流星体在进入大气层后都气化殆尽,只有少数大而结构坚实的流星体才能因燃烧未尽而有剩余固体物质降落到地面,这就是陨星。特别小的流星体因与大气分子碰撞产生的热量迅速辐射掉,不足以使之气化产据观测资料估算,每年降落到地球上的流星体,包括汽化物质和微陨星,总质量约有20万吨之巨! 这是否会使地球不断变"胖"呢?请看地球质量约为6×1021吨。由于流星体下落使地球"体重"的增加在50亿年时间内的总量约为33×1017吨,或者说使地球质量增加了两万分之一,相当于体重200斤的大胖子增加01两。可见其实在是微不足道!

生流星现象,而是以尘埃的形式飘浮在大气中并最终落到地面上,称为微陨星。

流星体是穿行在星际空间的尘埃和固体小块,数量众多,沿同一轨道绕太阳运行的大群流星体,称为流星群。其中石质的叫陨石;铁质的叫陨铁。

流星雨

流星雨在太阳系中,除了八大行星、矮行星和它们的卫星之外,还有彗星、小行星以及一些更小的天体。小天体的体积虽小,但它们和八大行星、矮行星一样,在围绕太阳公转。如果它们有机会经过地球附近,就有可能以每秒几十公里的速度闯入地球大气层,其上面的物质由于与地球大气发生剧烈摩擦,巨大的动能转化为热能,引起物质电离发出耀眼的光芒。这就是我们经常看到的流星。

流星雨是一种成群的流星,看起来像是从夜空中的一点迸发出来,并坠落下来的特殊天象。这一点或一小块天区叫做流星雨的辐射点。为区别来自不同方向的流星雨,通常以流星雨辐射点所在天区的星座给流星雨命名。例如每年11月17日前后出现的流星雨辐射点在狮子座中,就被命名为狮子座流星雨。其他流行雨还有宝瓶座流星雨、猎户座流星雨、英仙座流星雨。

有的流星是单个出现的,在方向和时间上都很随机,也无任何辐射点可言,这种流星称为偶发流星。流星雨与偶发流星有着本质的不同,流星雨的重要特征之一是所有流星的反向延长线都相交于辐射点。

流星雨的规模大不相同。有时在一小时中只出现几颗流星,但它们看起来都是从同一个辐射点“流出”的,因此也属于流星雨的范畴;有时在短短的时间里,在同一辐射点中能迸发出成千上万颗流星,就像节日中人们燃放的礼花那样壮观。当每小时出现的流星数超过1000颗时,称为“流星暴”。

彗星

除了离太阳很远时以外,彗星的长长的明亮稀疏的彗尾,在过去给人们这样的印象,即认为彗星很靠近地球,甚至就在我们的大气范围之内。1577年第谷指出当从地球上不同地点观察时,彗星并没有显出方位不同:因此他正确地得出它们必定很远的结论。彗星属于太阳系小天体。

每当彗星接近太阳时,它的亮度迅速地增强。对离太阳相当远的彗星的观察表明它们沿着被高度拉长的椭圆运动,而且太阳是在这椭圆的一个焦点上,与开普勒第一定律一致。彗星大部分的时间运行在离太阳很远的地方,在那里它们是看不见的。只有当它们接近太阳时才能见到。

大约有40颗彗星公转周期相当短(小于100年),因此它们作为同一颗天体会相继出现。历史上第一个被观测到相继出现的同一天体是哈雷彗星,牛顿的朋友和捐助人哈雷(1656一1742)在1705年认识到它是周期性的。它的周期是76年。历史记录表明自从公元前240年也可能自公元前466年来,它每次通过太阳时都被观测到了。它最近一次是在1986年通过的。

离太阳很远时彗星的亮度很低,而且它的光谱单纯是反射阳光的光谱。当彗星进入离太阳8个天文单位以内时,它的亮度开始迅速增长并且光谱急剧地变化。科学家看到若干属于已知分子的明亮谱线。发生这种变化是因为组成彗星的固体物质(彗核)突然变热到足以蒸发并以叫做彗发的气体云包围彗核。太阳的紫外光引起这种气体发光。

彗发的直径通常约为105千米,但彗尾常常很长枣达108千米或1天文单位。彗尾被认为是由气体和尘埃组成;4个联合的效应将它从彗星上吹出:(1)当气体和伴生的尘埃从彗核上蒸发时所得到的初始动量。(2)阳光的辐射压将尘埃推离太阳。(3)太阳风将带电粒子吹离太阳。(4)朝向太阳的万有引力吸力。这些效应的相互作用使每个彗尾看上去都不一样。当然,物质蒸发到彗发和彗尾中去,消耗了彗核的物质。有时以爆发的方式出现,比拉彗星就是那样;1846年它通过太阳时破裂成两个,1852年那次通过以后就全部消失。科学家估计一般接近太阳距离只有几个天文单位的彗星将在几千年内瓦解。

公元1066年,诺曼人入侵英国前夕,正逢哈雷彗星回归。当时,人们怀有复杂的心情,注视着夜空中这颗拖着长尾巴的古怪天体,认为是上帝给予的一种战争警告和预示。后来,诺曼人征服了英国,诺曼统帅的妻子把当时哈雷彗星回归的景象绣在一块挂毯上以示纪念。中国民间把彗星贬称为“扫帚星”、“灾星”。像这种把彗星的出现和人间的战争、饥荒、洪水、瘟疫等灾难联系在一起的事情,在中外历史上有很多。

彗星是在扁长轨道(极少数在近圆轨道)上绕太阳运行的一种质量较小的云雾状小天体。

彗星的轨道

彗星的轨道有椭圆、抛物线、双曲线三种。椭圆轨道的彗星又叫周期彗星,另两种轨道的又叫非周期彗星。周期彗星又分为短周期彗星和长周期彗星。一般彗星由彗头和彗尾组成。彗头包括彗核和彗发两部分,有的还有彗云。并不是所有的彗星都有彗核、彗发、彗尾等结构。我国古代对于彗星的形态已很有研究,在长沙马王堆西汉古墓出土的帛书上就画有29幅彗星图。在晋书“天文志”上清楚地说明彗星不会发光,系因反射太阳光而为我们所见,且彗尾的方向背向太阳。彗星的体形庞大,但其质量却小得可怜,就连大彗星的质量也不到地球的万分之一。由于彗星是由冰冻着的各种杂质、尘埃组成的,在远离太阳时,它只是个云雾状的小斑点;而在靠近太阳时,因凝固体的蒸发、气化、膨胀、喷发,它就产生了彗尾。彗尾体积极大,可长达上亿千米。它形状各异,有的还不止一条,一般总向背离太阳的方向延伸,且越靠近太阳彗尾就越长。宇宙中彗星的数量极大,但目前观测到的仅约有1600颗。

彗星的轨道与行星的很不相同,它是极扁的椭圆,有些甚至是抛物线或双曲线轨道。轨道为椭圆的彗星能定期回到太阳身边,称为周期彗星;轨道为抛物线或双曲线的彗星,终生只能接近太阳一次,而一旦离去,就会永不复返,称为非周期彗星,这类彗星或许原本就不是太阳系成员,它们只是来自太阳系之外的过客,无意中闯进了太阳系,而后又义无反顾地回到茫茫的宇宙深处。周期彗星又分为短周期(绕太阳公转周期短于200年)和长周期(绕太阳公转周期超过200年)彗星。目前,已经计算出600多颗彗星的轨道。彗星的轨道可能会受到行星的影响,产生变化。当彗星受行星影响而加速时,它的轨道将变扁,甚至成为抛物线或双曲线,从而使这颗彗星脱离大阳系;当彗星减速时,轨道的偏心率将变小,从而使长周期彗星变为短周期彗星,甚至从非周期彗星变成了周期彗星以致被“捕获”。

彗星的结构

彗星没有固定的体积,它在远离太阳时,体积很小;接近太阳时,彗发变得越来越大,彗尾变长,体积变得十分巨大。彗尾最长竟可达2亿多千米。彗星的质量非常小,绝大部分集中在彗核部分。彗核的平均密度为每立方厘米1克。彗发和彗尾的物质极为稀薄,其质量只占总质量的1%--5%,甚至更小。彗星物质主要由水、氨、甲烷、氰、氮、二氧化碳等组成,而彗核则由凝结成冰的水、二氧化碳(干冰)、氨和尘埃微粒混杂组成,是个“脏雪球”。

彗星的起源

彗星的起源是个未解之谜。有人提出,在太阳系外围有一个特大彗星区,那里约有1000亿颗彗星,叫奥尔特云,由于受到其它恒星引力的影响,一部分彗星进入太阳系内部,又由于木星的影响,一部分彗星逃出太阳系,另一些被“捕获”成为短周期彗星;也有人认为彗星是在木星或其它行星附近形成的;还有人认为彗星是在太阳系的边远地区形成的;甚至有人认为彗星是太阳系外的来客。

因为周期彗星一直在瓦解着,必然有某种产生新彗星以代替老彗星的方式。可能发生的一种方式是在离太阳105天文单位的半径上储藏有几十亿颗以各种可能方向绕太阳作轨道运动的彗星群。这个概念得到观测的支持,观测到非周期彗星以随机的方向沿着非常长的椭圆形轨道接近太阳。随着时间的推移,由于过路的恒星给予的轻微引力,可以扰乱遥远彗星的轨道,直至它的近日点的距离变成小于几个天文单位。当彗星随后进入太阳系时,太阳系内的各行星的万有引力的吸力能把这个非周期彗星转变成新的周期彗星(它瓦解前将存在几千年)。另一方面,这些力可将它完全从彗星云里抛出。如果这说法正确,过去几个世纪以来一千颗左右的彗星记录只不过是巨大彗星云中很少一部分样本,这种云迄今尚未直接观察到。与个别恒星相联系的这种彗星云可能遍及我们所处的银河系内。迄今还没有找到一种方法来探测可能与太阳结成一套的大量彗星,更不用说那些与其他恒星结成一套的彗星云了。

彗星云的总质量还不清楚,不只是彗星总数很难确定,即使单个彗星的质量也很不确定。估计彗星云的质量在10-13至10-3地球质量之间。

彗星的性质

彗星的性质还不能确切知道,因为它藏在彗发内,不能直接观察到,但我们可由彗星的光谱猜测它的一些性质。通常,这些谱线表明存在有OH、NH和NH2基团的气体,这很容易解释为最普通的元素C、N和O的稳定氢化合物,即CH4,NH3和H2O分解的结果,这些化合物冻结的冰可能是彗核的主要成分。科学家相信各种冰和硅酸盐粒子以松散的结构散布在彗核中,有些象脏雪球那样,具有约为01克/立方厘米的密度。当冰受热蒸发时它们遗留下松散的岩石物质,所含单个粒子其大小从104厘米到大约105厘米之间。当地球穿过彗星的轨道时,我们将观察到的这些粒子看作是流星。有理由相信彗星可能是聚集形成了太阳和行星的星云中物质的一部分。因此,人们很想设法获得一块彗星物质的样本来作分析以便对太阳系的起源知道得更多。这一计划理论上可以作到,如设法与周期彗星在空间做一次会合。目前这样的计划正在研究中。

彗星与生命

彗星是一种很特殊的星体,与生命的起源可能有着重要的联系。彗星中含有很多气体和挥发成分。根据光谱分析,主要是C2、CN、C3、另外还有OH、NH、NH2、CH、Na、C、O等原子和原子团。这说明彗星中富含有机分子。许多科学家注意到了这个现象:也许,生命起源于彗星!

1990年,NASA的Kevin J Zahule和Daid Grinspoon对白垩纪-第三纪界线附近地层的有机尘埃作了这样的解释:一颗或几颗彗星掠过地球,留下的氨基酸形成了这种有机尘埃;并由此指出,在地球形成早期,彗星也能以这种方式将有机物质像下小雨一样洒落在地球上----这就是地球上的生命之源。

彗星的俗称

彗星俗称扫把星。在《天文略论》这本书中写道:彗星为怪异之星,有首有尾,俗象其形而名之曰扫把星。

编辑本段

基本资料

  母彗星 55P/Tempel-Tuttle

  辐射点 赤经153°、赤纬+22°

  活跃期 11月14-21日

  大爆发日 11月17日 19点 (UT时)

  11月18日 3点43分 (本地时)

  周期 约33年

  流星速度 71km/s

  ZHR:40+(1998-1999年为33年周期的大爆发)

  CHR:Correctly Hourly Rate

  CHR=HR×Fa×X

  Fa=r1 ^(65-Lm)

  X=1/(1-k)

  ZHR:Zenith Hourly Rate

  ZHR=CHR×Fb

  Fb=1/cos^rz

  z=90-h

  HR:流星数×60/观测时间内的流星数

  Fa:肉眼可见最暗星等之修正系数

  Fb:辐射点高度修正系数

  r1:光度系数(29) 狮子座流星雨辐射点的位置

  Lm:肉眼所见之极限星等

  X:云量修正系数

  k:个人视野中之云量(1 low-10 max)

  r2:常数 15

  z: 辐射点距离天顶之距离(角度)

  h:辐射点之高度

编辑本段

出现周期

  这颗彗星绕太阳公转,同时,它不断抛散自身的物质,就象洒农药那样,在它行进的轨道上散下许多小微粒,但这些小微粒分布并不均匀。有的地方稀薄,有的地方密集,当地球遇上微粒稀薄地方,出现的流星就少,遇到密集的地方,出现的流星就多。这些小微粒很容易受各种因素的影响而慢慢飘散,但在彗星回归时,地球会经过它近期释放出的颗粒稠密区。地球上的人们便会看到大规模的流星雨。由于坦普尔•塔特尔彗星的周期为3318年,所以狮子座流星雨是一个典型的周期性流星雨,它的的周期约为33年。

编辑本段

出现记录

  早在公元前1768年,我国就有关于它的记载,其它国家的史料中也能找到它的踪影,1799年在南美洲,人类第一次科学地描述了狮子座流星雨的情况。1833年,流星雨的规模达到惊人的程度。一位美国坦普尔•塔特尔波士顿的观测者这样描述到:“1833年11月12-13日,一个惊人的场面降临地球,整个天空被流星照  狮子座星图亮,成千上万颗‘星星’在天上飞舞。就象下雪时漫天空雪花在飘扬。”科学家们估计,在这场长达9小时的流星雨事件中,一个人至少可以看到24万多颗流星。

  天文学家预言,33年后,即1866年11月还会看到壮丽的流星雨。果然不出所料,欧洲的人们看到了每小时达到5千颗的流星雨,北美洲的人们由于月光干扰,每小时看到1000颗,规模不如1833年那样壮观。当人们满怀期望地迎接1899年的狮子座流星雨时,却以失望告终。1932年,人们重燃希望,结果又落空了。人们在一分钟内只看到一颗流星。接连遭受打击的人们对狮子座流星雨不再有什么期望了。

  1966年11月17日奇迹出现了。狮子座流星雨又迸发了,美国西部的亚利桑那州到处都能看到一物辉煌无比的流星雨,每小时的流星数超过10万甚至达到14万,持续时间为4小时。

  狮子座流星雨中的流星过后,在天空中短时间内还会留下一团云雾状痕迹,这就是流星余迹,图7是一颗亮的狮子座流星及其余迹的变化过程。

  狮子座流星雨中有时也有火流星(亮度超过金星或是-3等的流星)。

编辑本段

观测过程

  1799年欧洲、南美均观测到这一流星雨,德国探险家AHumboldt有过精彩描述。

  18331112 北美东海岸9小时内估计观测到24万多颗流星。

    狮子座流星雨1834年 发现辐射点在狮子座,因而命名为狮子座流星雨。奥伯斯证认出1766、1799两年11月在委内瑞拉观测到也是同一流星群的两次出现,周期3359年。天文界开始认识和研究狮子座流星雨。

  1864年 纽顿证明狮子座流星雨从902年起就有活动记载。共计有十个年份,其中6次记载取自中国官方史书。

  186611 狮子座流星雨再次出现,计算出其运动轨道。

  186711 奥普尔茨给出彗星1866Ⅰ轨道,因与狮子座流星群轨道十分相似而得知其为流星群的母体彗星。

  [1]1899年 未观测到狮子座流星雨,彗星也没观测到,有人认为彗星已瓦解。公众感到受骗上当而十分气愤,对天文学家的不信任感陡然增加。

  19001115/16 在加拿大重又观测到狮子座流星雨,每小时1千条。第二年在美国西南部和墨西哥又见到,每小时最多达2千条。

  1933年 未发现流星雨,有人估计彗星可能已碎裂。

  1965年 重新找到了失踪近一个世纪的坦普尔-塔特尔彗星。

  19661117 再度观测到狮子座流星雨,最盛时每小时超过14万颗。

  1999年11月18日5时40分前后,有着“流星雨之王”称号的狮子座流星雨大爆发光临地球,每小时可能有300颗左右的流星划过夜空。

编辑本段

出现原因

  流星通常是单个零星出现的,彼此间无关,出现的时间和方向也没有规律,平均每小时可看到10  狮子座流星雨条左右,称为偶现流星(又称偶发流星)。有时候在天空某一区域某一段时间内流星数目会显著增多,每小时几十条甚至更多,看上去就象下雨一样,这种现象称为流星雨。特别大的流星雨又称流星暴。流星雨是一大群流星体闯入地球大气的结果,这种成群结队的流星体称为流星群。

  通常认为流星雨的出现与彗星有关。彗星是太阳系内一类奇特的天体,它在远离太阳的时候表现为一颗彗核,直径几公里或更大些。一旦接近太阳,在太阳辐射的作用下,由于彗星核物质的气化会形成巨大的彗发和长长的彗尾。流星群便起源于彗星散射出来的物质碎粒或是瓦解了的彗核。

  每年11月14日至21日,尤其是11月17日左右,都有一些流星从狮子座方向迸发出来,这就是狮子座流星雨。天文学家现已清楚,形成狮子座流星雨的母体彗星是1866年发现的坦普尔-塔特尔彗星。

  这颗彗星绕太阳公转,同时,它不断抛散自身的物质,就象洒农药那样,在它行进的轨道上散下许多小微粒,但这些小微粒分布并不均匀。有的地方稀薄,有的地方密集,当地球遇上微粒稀薄地方,出现的流星就少,遇到密集的地方,出现的流星就多。这些小微粒很容易受各种因素的影响而慢慢飘散,但在彗星回归时,地球会经过它近期释放出的颗粒稠密区。地球上的人们便会看到大规模的流星雨。由于坦普尔•塔特尔彗星的周期为3318年,所以狮子座流星雨是一个典型的周期性流星雨,它的的周期约为33年。

  大名鼎鼎的“狮子座”流星雨并不是“狮子座”上的流星雨。“狮子座”上即使有流星雨,在地球上凭肉眼也看不到。“狮子座”流星雨是由一颗叫做“坦普尔•塔特尔”的彗星所抛撒的颗粒滑过大气层所形成的。因为形成流星雨的方位在天球上的投影恰好与“狮子座”在天球上的投影相重合,在地球上看起来就好像流星雨是从“狮子座”上喷射出来,因此称为“狮子座”流星雨。

编辑本段

相关概念

  太阳系内除了太阳、八大行星及其卫星、小行星、彗星外,在行星际空间还存在着大量的尘埃微粒和微小的固体块,它们也绕着太阳运动。在接近地球时由于地球引力的作用会使其轨道发生改变,这样就有可能穿过地球大气层。或者,当地球穿越它们的轨道时也有可能进入地球大气层。由于这些微粒与地球相对运动速度很高(11-72公里/秒),与大气分子发生剧烈摩擦而燃烧发光,在夜间天空中表现为一条光迹,这种现象就叫流星,一般发生在距地面高度为80-120公里的高空中。流星中特别明亮的又称为火流星。造成流星现象的微粒称为流星体,所以流星和流星体是两种不同的概念。

  大部分流星体在进入大气层后都气化殆尽,只有少数大而结构坚实的流星体才能因燃烧未尽而有剩余固体物质降落到地面,这就是陨星。

编辑本段

相关影响

航天器

  1可能对航天器造成威胁。流星群颗粒大都很小(<1mm),但速度极高。以98年狮子座流星雨为例,相对地球的运动速度为71km/s,达到子弹初速的100倍。如果较大颗粒或结构较坚实的颗粒高速撞击人造卫星或其它航天器,很可能造成严重后果,如舱面击穿,探测器损坏,太阳能板受损,电子器件因等离子体放电而失效,甚至整个航天器被击坏、击毁等。历史上已经有过这类事件发生,如1993年英仙座流星暴使欧洲航天局的Olympus卫星因遭到一颗流星体的撞击而一度失控。

电离效应

  2大批流星群闯入地球大气造成的电离效应可能使远距离电讯发生异常。

成云降雨

  3对云层和雨量的影响。大批流星体尘埃散入地球大气,提供了额外的水汽凝结中心,会使云层和雨量增大。

人畜伤害

  4陨星击中人类或牲畜。关于人体被陨星直接击中尚未见报道,但据说1836年在巴西曾砸死几只羊,1911年埃及打死一条狗,1969年澳大利亚发生过陨星打穿屋顶等事件。

撞击灾变

  5严重的撞击灾变事件。这类事件的祸首已不能算是流星体,而是大小不等的小行星。

军事影响

  6可以利用流星出现时,因流星体燃烧形成的长条电离离子柱对无线电讯号的反射作用,进行高频或甚高频通讯,作用距离可达1800公里。因流星通讯不受太阳活动或核爆炸影响,在军事上有重要意义,美国已有流星通讯设备作为战术通讯的一种手段来装备部队。

编辑本段

观测历史

  902年,中国天文学家第一次记录到狮子座流星暴(中国古代天象记录);  狮子座流星雨1799年,德国著名科学家洪堡在委内瑞拉记录到这一天象;

  1833年,北美洲出现了罕见的流星暴,估计在9小时内有24万颗流星划破天空;

  1866年,发现坦普尔-特塔尔彗星,并确定了该彗星的轨道,在欧洲观测到流星暴;

  1899年,预期的流星暴并未出现,公众对天文计算可靠性的信心发生动摇;

  1933年,仍未有观测到流星暴的报道;

  1966年,在美国的中西部又一次出现了壮观的"流星暴",估计高峰时达每小时有10万颗流星自天而降;

  1998年,狮子座流星雨再次光临地球,让大多数现代人真切地认识到这位“流星雨之王”。

  2001年11月18日深夜全球共有3000多万人等待流星雨。

  2009年狮子座流星雨的峰值将出现在北京时间11月18日5时43分(可能会后延30分钟-60分钟)。届时,每小时最大流量约为500颗,这将是“次暴雨级别”的。公众从18日凌晨2时至天亮都可对该流星雨进行观测。美国宇航局流星体环境署主管威廉-库克(William Cooke)说:“受益于先进的计算机性能,自上世纪90年代我们就能较准确地预测流星现象。2009年是狮子座流星群最强的爆发期,最强时可达到每小时出现300颗流星。” 在欧洲地区狮子座流星群在凌晨1-3点清晰地位于夜空东北地平线位置,当彗星接近太阳时将融化其灰尘微粒中的冰物质,这些灰尘微粒多数比沙粒大。对于多数近距离接近地球的彗星,它们将在大气  狮子座流星雨层中燃烧并形成陨石。

  在每年度进行的天文观测中,狮子座流星群非常像一颗不稳定的岩石恒星,多年以来一直出现着彗星,通常情况下平均每小时出现15颗流星。而在一些特殊的年份中,狮子座流星群可以突然喷射出壮观的流星风暴,平均每小时出现数千颗流星。

  狮子座流星雨的一些活动可能源自一个非常古老的彗星碎片尾迹,年代可追溯到1102年。这些物质的年龄超过900岁,绕太阳运行了不到27周。其结果是,它们几乎已完全被驱散,不具有任何活跃性。格林威治标准时间11月18日的凌晨3点29分,地球将穿过这条尾迹中央长3万英里(约合48万公里)的区域。

编辑本段

相关预言

  1833年11月13日居住在波士顿市郊的26岁女作家,天文爱好者艾格丝 克拉克看见了狮子座流星雨,每分钟平均580颗,每小时35万颗,共计21万颗。

  她断言这种流星雨每隔33年一次,这就是著名的“克拉克预言”。

  1866年流星雨如约而至。

  1899年克拉克的女儿华蒂断言11月14日流星雨将会来临,但只有少量的流星。

  1932年73岁的美塔兰确信流星雨将回来,但老天却开了一个玩笑,当晚天气骤变,乌云密布。

  1965年学姐前辈麦卫尔并没有让儿子德恩预报流星雨的来临,但流星雨却来了。

  2001年德恩与女儿拉蒙声称流星雨将来,但并没有人认同,但是流星雨却来了,只是晚来了3年,一直成谜。

  2002年5月19日,美国流行探索者联合会授予拉蒙以“家庭杰出成就奖”。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/3412114.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-27
下一篇2024-02-27

发表评论

登录后才能评论

评论列表(0条)

    保存