太阳是怎么形成的

太阳是怎么形成的,第1张

1、有报道说,太阳是原始恒星爆炸而形成的

  2、太阳是由原始星形云成的.最近美国的红外线望远镜看到金牛座里有新星正在诞生,以有一百多万年了,非常年轻,是现在所发现的最年轻的星体

  3、 在17世纪时,牛顿提出:散布于空间中的弥漫物质可以在引力作用下凝聚为太阳和恒星的设想经过历代天文学家的努力,已逐步发展成为一个相当成熟的理论。观测表明,星际空间存在着许多由气体和尘埃组成的巨大分子云。这种气体云中密度较高的部分在自身引力作用下会变得更密一些。当向内的引力强到足以克服向外的压力时,它将迅速收缩落向中心。如果气体云起初有足够的旋转,在中心天体周围就会形成一个如太阳系大小的气尘盘,盘中物质不断落到称为原恒星的中央天体上。在收缩过程中释放出的引力能使原恒星变热,当中心温度上升到1000万度以引发热核反应时,一颗恒星就诞生了。恒星的质量范围在01-100个太阳质量之间。更小的质量不足以触发核反应,更大的质量则会由于产生的辐射压力太大而瓦解。近年来,红外天文卫星探测到成千上万个处于形成过程中的恒星,毫米波射电望远镜在一些原恒星周围发现由盘两极射出的喷流。这些观测结果对上述理论都是有力的支持。

  恒星的颜色与其表面温度的关系:其他所有恒星也和太阳一样,是炽热的大火球。不过,它们的表面温度并不相同,天文学家发现,恒星的表面温度越高,它发出的光线的颜色越偏向紫色,温度越低,越偏向红色。因此,通过恒星的颜色,可以较为粗略地判断该恒星表面温度的相对高低。

  4、宇宙形成之谜有望解开———

  科学家们认为,发生在137亿年前的大爆炸创造了宇宙,大约1亿年后,氢原子开始结合燃烧,产生了明亮燃烧的恒星,但这些恒星究竟是个什么样子,科学家一直没有搞清楚。据美国宇航局太空网报道,美国的天文学家声称,他们可能已经发现了宇宙的“第一缕曙光”。这一发现有望帮助他们揭示宇宙中各个星系在“大爆炸”发生仅数亿年后开始形成时,整个宇宙的实际发展情景。

  该研究将首次向人们展示出距今130亿年前宇宙刚诞生时的雏形模样。

  据美国宇航局驻马里兰的戈达德太空飞行中心的研究人员说,他们相信已经捕捉到早已消失了的恒星的辐射痕迹,这些恒星是在宇宙的婴儿时期诞生的。如果上述发现能够被最终证实,该研究将首次向人们展示出距今130亿年前宇宙刚诞生时的雏形模样,同时将有望揭示宇宙中各个星系在“大爆炸”发生仅数亿年后开始形成时,整个宇宙的实际发展情景。

  这项研究虽然不是结论性的,但它是证明这些早期恒星存在的第一个切实的证据。研究人员认为,这些恒星产生并形成了包括太阳在内的未来的恒星的原始物质。据发表在3日《自然》杂志上的这篇论文的第一作者、天体物理学家亚历山大·卡什林斯基说:“它们出现在什么地方,到底有多大,到底有多明,它们是否还存在着,我们都不能肯定。我们认为,我们能做的就是获得这些恒星的最初的信息。”

  卡什林斯基的研究小组使用美国宇航局的斯皮策太空望远镜测量宇宙射线,这是一种人们用肉眼就能看见的红外线,以小长条的形式出现在天空中。接着,研究人员删除所有已知的银河系的辐射,他们认为,剩下的射线就是这些早期恒星发出的。这项试验就像是在一个大型露天体育场里录下所有人的喊叫声,然后删除每一个人的噪声,只留下那一个想要得到的人的声音。

  “第一缕曙光”可能来自天龙星座的第三星族。

  据来自戈达德研究中心的科研人员介绍,利用美国宇航局斯皮策太空望远镜上携带的红外线阵列照相机,研究小组对天龙座星云进行了10小时的拍摄,捕捉到了正在扩散的红外光,它们的能量比光学光和我们肉眼可见的光还要低。

  经过后期图像分离处理后,在删除其它的射线后,研究人员成功获得了该区域弥漫着红外辐射的高清晰实景图像。戈达德的研究小组表示,这些光线可能来自天龙星座的第三星族,这是一个假定的恒星家族,天文学家认为,该星族形成的时间比其他星族都要早(第一星族和第二星族都是依据被发现的时间先后命名的,这些星族都由我们晚上可以看见的恒星构成)。

  此次观测拍摄到的这些宇宙红外射线,极有可能就是大爆炸后出现的第一批恒星发出的,或者是由跌入第一批黑洞中的高温气体发出的。科学家描述说,观测这些红外射线,就像夜晚在飞机上观看一座远处的城市,灯光太远,又非常弱,所以,想看清某一个物体是个什么样子是不可能的。同样,由于这些光线来自非常遥远的宇宙深处,因而要想分辨出它们是哪些恒星发出来的也不是容易做到的。

  斯皮策望远镜此次的重大发现,与美国宇航局的宇宙背景探测卫星在上世纪九十年代所观测的结果是一致的,当时这颗探测卫星的探测结果显示,宇宙可能有一个红外背景,它与天文学家已知的恒星并无联系。

  斯皮策的观测也支持了美国宇航局威尔金森微波各项异性探测器在2003年进行的观测结果。当时天文学家们根据这一结果估计,在“大爆炸”发生2亿到4亿年后,最先形成的恒星首次发光。

  大爆炸发生大约2亿年后,第一批恒星才开始发出“宇宙之光”。

  科学家提出的宇宙诞生理论是,在距今137亿年前发生了一次“大爆炸”,空间、时间和物质由此诞生。刚刚诞生的宇宙由温度极高、密度极大、体积极小的物质组成,这些物质迅速膨胀,由热到冷、由密到稀。而在大爆炸发生大约2亿年后,第一批恒星才开始发出“宇宙之光”。

  宇宙理论学家表示,宇宙出现的第一批恒星可能比地球和太阳的质量大一百倍以上,而且温度极高,也非常亮,只是都很短命,每一颗恒星只能燃烧几百万年。随着宇宙的不断膨胀,天龙星座第三星族的恒星发出的紫外线光,将被红移,或伸展成低能量的光。这些光现在是可以用红外线观测仪观测到的。

  这份报告的另一个作者、研究小组成员约翰·玛瑟博士表示:“我们最初拍摄到的图像里包含着我们都熟悉的那些恒星和星系发出的光线,我们随后删除了我们已知的所有的东西———包括恒星和星系发出的光线,不论是远的还是近的。那么,照片中留下来的部分就没有了恒星和星系,只剩下了这些带有巨大斑点的红外光,我们认为,这可能就是在宇宙诞生之初形成的那些最早的恒星发出的光。”

  第一缕星光有助于揭示宇宙如何亮起来。

  卡什林斯基博士表示:“我们认为,我们现在可以看到宇宙诞生初期的天体发出的光的集合,尽管那些发光的恒星到今天早已经在宇宙中衰亡消失了,但是它们发出的光和能量仍在宇宙中穿行。”如果这个研究小组的结论是正确的话,那么这个研究将会有助于人类理解宇宙最初是怎么亮起来的。

  哈佛大学的天文学教授阿维·罗布并没有参与这一研究,不过他表示,最初的宇宙也许是黑暗的,时间持续了50万年之久,之后,氢开始结合成明亮的燃烧的星星,比现在的太阳明亮几百万倍,而且这些星星就是卡什林斯基的研究小组希望能够找到痕迹的那些星星。罗布说:“这就是这一研究为什么这么令人兴奋的原因,我们第一次在研究早期星星潜在的证据,第一缕星光是怎么产生的,是什么时候形成的。”

  加利福尼亚理工学院的一个没有参与这一研究的天文学教授理查德·埃利斯谨慎地同意卡什林斯基的观点,埃利斯说:“即使是在消除这些背景信号方面发生一个小小的失误也会导致出现具有欺骗性的结果。”但他在接受采访时说,由于技术的局限性,卡什林斯基的研究小组所做的工作是最好的工作。他说:“我没有发现这些分析中有什么错误,当然,下一步是其他的天文学家来证明它的正确性。”

  著名的科学系统与应用科学家理查德·阿伦特也是这个研究小组成员。他们透露,未来的太空探索任务,将包括利用美国宇航局的詹姆士·韦伯太空望远镜进行更深入的观测。

不好意思,有一点多。

所谓天上的星星,除了太阳系内的星星是行星之外~可见的基本都是恒星

先说宇宙的产生:

宇宙的起源

宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。

《淮南子原道训》注:“四方上下曰宇,古往今来曰宙,以喻天地。”即宇宙是天地万物的总称。

千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。

在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。

大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。

然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西?

“大爆炸理论”是伽莫夫于1946年创建的。它是现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。

根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束。

宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。

在来说恒星是个什么东东:

恒星的诞生

在星际空间普遍存在着极其稀薄的物质,主要由气体和尘埃构成。它们的温度约10~100K,密度约10-24~10-23g/cm3,相当于1cm3中有1~10个氢原子。星际物质在空间的分布并不是均匀的,通常是成块地出现,形成弥漫的星云。星云里3/4质量的物质是氢,处于电中性或电离态,其余约是氦以及极少数比氦更重的元素。在星云的某些区域还存在气态化合物分子,如氢分子、一氧化碳分子等。如果星云里包含的物质足够多,那么它在动力学上就是不稳定的。在外界扰动的影响下,星云会向内收缩并分裂成较小的团块,经过多次的分裂和收缩,逐渐在团块中心形成了致密的核。当核区的温度升高到氢核聚变反应可以进行时,一颗新恒星就诞生了。'

主序星

恒星以内部氢核聚变为主要能源的发展阶段就是恒星的主序阶段。处于主序阶段的恒星称为主序星。主序阶段是恒星的青壮年期,恒星在这一阶段停留的时间占整个寿命的90%以上。这是一个相对稳定的阶段,向外膨胀和向内收缩的两种力大致平衡,恒星基本上不收缩也不膨胀。恒星停留在主序阶段的时间随着质量的不同而相差很多。质量越大,光度越大,能量消耗也越快,停留在主序阶段的时间就越短。例如:质量等于太阳质量的15倍、5倍、1倍、02倍的恒星,处于主序阶段的时间分别为一千万年、七千万年、一百亿年和一万亿年。

目前的太阳也是一颗主序星。太阳现在的年龄为46亿多年,它的主序阶段已过去了约一半的时间,还要50亿年才会转到另一个演化阶段。与其他恒星相比,太阳的质量、温度和光度都大概居中,是一颗相当典型的主序星。主序星的很多性质可以从研究太阳得出,恒星研究的某些结果也可以用来了解太阳的某些性质。

红巨星与红超巨星

当恒星中心区的氢消耗殆尽形成由氦构成的核球之后,氢聚变的热核反应就无法在中心区继续。这时引力重压没有辐射压来平衡,星体中心区就要被压缩,温度会急剧上升。中心氦核球温度升高后使紧贴它的那一层氢氦混合气体受热达到引发氢聚变的温度,热核反应重新开始。如此氦球逐渐增大,氢燃烧层也跟着向外扩展,使星体外层物质受热膨胀起来向红巨星或红超巨星转化。转化期间,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不升高反而会下降。其原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍然可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度虽可能增长,表面温度却会下降。质量高于4倍太阳质量的大恒星在氦核外重新引发氢聚变时,核外放出来的能量未明显增加,但半径却增大了好多倍,因此表面温度由几万开降到三、四千开,成为红超巨星。质量低于4倍太阳质量的中小恒星进入红巨星阶段时表面温度下降,光度却急剧增加,这是因为它们外层膨胀所耗费的能量较少而产能较多。

预计太阳在红巨星阶段将大约停留10亿年时间,光度将升高到今天的好几十倍。到那时侯,地面的温度将升高到今天的两三倍,北温带夏季最高温度将接近100℃。

大质量恒星的死亡

大质量恒星经过一系列核反应后,形成重元素在内、轻元素在外的洋葱状结构,其核心主要由铁核构成。此后的核反应无法提供恒星的能源,铁核开始向内坍塌,而外层星体则被炸裂向外抛射。爆发时光度可能突增到太阳光度的上百亿倍,甚至达到整个银河系的总光度,这种爆发叫做超新星爆发。超新星爆发后,恒星的外层解体为向外膨胀的星云,中心遗留一颗高密天体。

金牛座里著名的蟹状星云就是公元1054年超新星爆发的遗迹。超新星爆发的时间虽短不及1秒,瞬时温度却高达万亿K,其影响更是巨大。超新星爆发对于星际物质的化学成分有关键影响,这些物质又是建造下一代恒星的原材料。

超新星爆发时,爆发与坍塌同时进行,坍塌作用使核心处的物质压缩得更为密实。理论分析证明,电子简并态不足以抗住大坍塌和大爆炸的异常高压,处在这么巨大压力下的物质,电子都被挤压到与质子结合成为中子简并态,密度达到10亿吨/立方厘米。由这种物质构成的天体叫做中子星。一颗与太阳质量相同的中子星半径只有大约10千米。

从理论上推算,中子星也有质量上限,最大不能超过大约3倍太阳质量。如果在超新星爆发后核心剩余物质还超过大约3倍太阳质量,中子简并态也抗不住所受的压力,只能继续坍缩下去。最后这团物质收缩到很小的时候,在它附近的引力就大到足以使运动最快的光子也无法摆脱它的束缚。因为光速是现知任何物质运动速度的极限,连光子都无法摆脱的天体必然能束缚住任何物质,所以这个天体不可能向外界发出任何信息,而且外界对它探测所用的任何媒介包括光子在内,一贴近它就不可避免地被它吸进去。它本身不发光并吞下包括辐射在内的一切物质,就象一个漆黑的无底洞,所以这种特殊的天体就被称为黑洞。黑洞有很多奇特的性质,对黑洞的研究在当代天文学及物理学中有重大的意义。

科学家发现,在木星和土星的表面散放出来的能量比它们所吸收的能量要多,这就意味着木星和土星也可以发光,只是它们发出的是远红外线而不是可见光而已。

以上大部分都是摘人家的答案~其实关于宇宙和恒星的产生有很多的科教片~关于宇宙的首推霍金先生的《时间简史》,不过不知道你的年龄是那个阶段,这本书比较适合高中或以上年龄阶段的~不过我到现在还没有看完的说~希望你比我强^-^

奥特曼的星球有: M78星云、L77星云、U40星球、O-50行星等。

M78为梅西耶天体,M78是位于猎户座的反射星云。M42和M43形成的大星云区域,M78可以说是其一部分。距离1600光年,约4光年范围左右。1780年被发现。该星云正在形成年轻的恒星。另外,此星云是日本特摄剧《奥特曼》设定的奥特曼之星。

M78是在包括NGC 2064、NGC 2067、和NGC 2071这一组星云中最明亮的弥漫反射星云。这个群体属于距离地球大约1,350光年的猎户B分子云复合体,M78使用小望远镜看起来是一个斑块,并有视星等10等和11等的两颗星,因此很容易就能找到。

这两颗星都是B型星,编号HD 38563 A和HD 38563 B,经由尘埃云反射它们的光线,才使M78能被看见。在红外线下,可以看见M78有一组恒星集团由于重力,星云中的分子气体已经分裂成一个个继承的团块在M78中大约有45颗金牛座T型变星 还有大约17颗被称为赫比格-哈罗天体的年轻恒星。

——M78星云

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1242976.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-20
下一篇2023-09-20

发表评论

登录后才能评论

评论列表(0条)

    保存