望远镜分为哪几种

望远镜分为哪几种,第1张

望远镜分为以下几种:

1、折射望远镜

折射式望远镜,是用透镜作物镜的望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜(普通消色差望远镜)应用最普遍。

2、反射望远镜

是用凹面反射镜作物镜的望远镜。可分为牛顿望远镜,卡塞格林望远镜等几种类型。但为了减小其它像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。

3、折反射望远镜

是在球面反射镜的基础上,再加入用于校正像差的折射元件,可以避免困难的大型非球面加工,又能获得良好的像质量。比较著名的有施密特望远镜。

4、射电望远镜

探测天体射电辐射的基本设备。可以测量天体射电的强度、频谱及偏振等量。通常,由天线、接收机和终端设备3部分构成。天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式

望远镜的参数:

1、放大倍数

一般用目镜视角与物镜入射角之比作为[2] 望远镜放大倍数的标示,通常用物镜焦距与目镜焦距之比计算,表示望远镜视角的放大程度。例如,放大倍数为10倍的望远镜,指的是能将1度视角的目标放大为10度。

2、视场角

(视场范围)用1000米处产品可视景物范围标示,如126m/1000m,表示距观察者1000米处,望远镜可观察到126米范围的视场。

3、出瞳直径

是粗略描述成像亮度的参数。在弱光环境下,越大的出瞳直径,可以带来更清晰的图像。人类的瞳孔,在正常生理情况下,最大不会超过7mm,所以大于7mm的出瞳直径

-望远镜

美国国家航空航天局的哈勃空间望远镜以及夏威夷双子座地面望远镜联合朱诺太空飞行器一起探测太阳系最猛烈的风暴,这些风暴发生在5亿多英里外的巨大行星木星上。

由迈克尔· 王带领的加利福尼亚大学伯克利分校研究团队包括了来自马里兰州绿带城美国国家航空航天局戈达德太空飞行中心的艾米·西蒙和同样来自伯克利的伊姆克·德帕特。他们将哈勃和双子座在多重波长下的观察发现与朱诺飞行器轨道上的木星近景图结合起来,以深入了解这颗遥远星球上波云诡谲的天气。

无线“灯光秀”

相比于地球的风暴,木星的连续风暴更为庞大,其伴随着从地面到天空40英里高的雷暴(地球常规雷暴的5倍)和拥有地球最大“超级闪电”三倍多能量的强大闪电。

正如地球上的闪电,木星的闪电束也像无线发射器一样,在划破天空的同时发送出无线电波以及可见光。

朱诺飞行器就会在在风暴团上方低飞,和它赛跑,来侦察被称做“天电”和“吹哨人”的无线信号。被捕捉到的无线信号甚至可以接着被用于在木星白天的一面和闪电无法被看到的深云团上绘制闪电。

每在同一路线时,哈勃和双子座两两远望,拍摄作为解释朱诺飞行器近距离观察发现关键的木星高分辨率全球视图。西蒙解释道:“朱诺飞行器的微波辐射仪器通过侦测可以穿透深厚云层的高频无线电波来深入探索木星的大气层。而哈勃和双子座的数据可以告诉我们那些云层有多厚以及我们有多深入观察那些云层。”

通过将朱诺飞行器探测到的闪电映射到由哈勃拍摄的木星光学图像和双子座同时拍到的红外热成像图上,研究团队已经能够证明闪电的爆发和云团结构的三种组合有关:由水构成的深云团,湿润气流上升引起的大型对流云塔(本质上是木星雷暴云),以及可能是由对流云塔外干燥气流的下沉而形成的晴朗云区。

哈勃望远镜的数据显示了对流云塔中密集云团的高度以及深水云团的深度。双子座望远镜的数据则清晰展现了高云层中的空白区,而深水云团很有可能在那里被看到。

在一种被称作褶皱纤维状云区的湍流区中,闪电是很常见的,这表明湿对流正在其中发生。他说道:“这些气旋性涡旋可能是内部能量烟囱,来从对流中帮助释放内在能量。这样的情况并不普遍,但是这样的气旋似乎是在促成对流的形成。”

将闪电和深水云关联起来的能力也为研究人员提供了另一个估算木星大气层含水量的方法,这对于理解木星以及其他气体巨星和冰巨星是如何形成的,还有太阳系作为一个整体是如何因此形成的十分重要。

虽然之前的太空任务已经收集了一些关于木星的资料,但很多细节仍然成谜,包括深层大气层含有多少水,热气到底是如何从内部流出的,以及是什么导致了云层的某些颜色和图案。 这些问题的整合答案能够帮助人们深入了解大气动力学和大气层的三维空间结构。

“鬼火”大红斑

随着哈勃和双子座在朱诺任务中对木星进行更为频繁的观察,科学家们也因此能够研究一些像大红斑的短期变化和出现短暂图案等的现象。

此次朱诺飞行器拍摄的以及之前木星任务中的揭示了大红斑中深色图案的出现,消失以及变化。单看一组并不能明确知道这些现象是否是由高云层中的一些神秘黑色物质导致的,又或者它们其实是高层云团中的一些洞,就像是通往下面更深、更暗云团的窗户。

而现在,通过对比哈勃和双子座在数小时之内拍摄到的可见光学图像和红外热成像图,再来回答这些问题是可能的。可见光下的深色区域在红外线下非常亮眼,这表明他们实际上就是云层中的洞。在无云区域,木星内部以红外光线的形式释放的热量得以自由遁入太空(不然就会被高层云团挡住),从而在双子座的中显得明亮。

“就像是一簇鬼火,”王说到:“你在没有云的地方看它是明亮的红外光线,但当云密布时,它在红外线下又是深色的。”

图源:美国国家航空航天局,欧洲航天局,迈克尔·王及其团队

上图关于木星大红斑的是由哈勃太空望远镜和双子座望远镜在2018年4月1日收集的数据制作的。通过将两个不同的望远镜在几乎同一时间拍摄的图像整合起来,天文学家们得以确认大红斑上的黑色图案是云层中的洞,而不是一堆暗物质。

左上(广角)和左下(特写):哈勃拍摄到在木星大气层的云层中反射的阳光(可见光波长)显示了大红斑中的深色图案。

右上:由双子座在同一区域拍摄的红外热成像图显示了热量是以红外能量的形式释放的。堆叠的冷云层在上显示为深色部分,但云团中的空隙使得明亮的红外射线得以从暖流层中释放。

下中:哈勃拍摄的紫外线图显示了从大红斑上雾霾层散射回来的阳光。大红斑能够在可见光下被看到是因为这些霾吸收了蓝色光波。哈勃的数据显示即使在较短的紫外光波下,这些霾仍在持续吸收。

下右: 在哈勃和双子座数据合成的多重波长图中,可见光是蓝色的,热红外线是红色的。将这些发现结合起来可以看出在红外线下明亮的区域是云层中的空隙,或是有较少阻挡内部热量云团的地方。

哈勃和双子座的发现是为了给朱诺飞行器的第12次飞掠(近木点 12)提供宽广的视角。

木星气象追踪者:哈勃望远镜和双子座望远镜

哈勃和双子座在支持朱诺任务中进行的木星定期拍摄证明了它在很多其他天气现象研究中的价值,如风的模式变化,大气波的特征以及大气中各种气流的流通。

哈勃和双子座能够将木星作为一个整体来进行监测,并实时为朱诺的测量任务提供多种波长地图参考,正如地球的气候观测卫星为美国国家海洋和大气管理局的飓风追踪器提供信息那样。

“因为我们现在定期有来自不同观测器和波长下的高分辨率图像,我们更够学到比木星天气更多的东西,”西蒙解释道:“这就相当于是一个气象卫星,我们也终于可以观察气象周期了。”

由于哈勃和双子座望远镜的观测对于解读朱诺获得的数据至关重要,王和他的同事西蒙、德帕特正努力让其他研究团队能够更轻松地通过位于马里兰,巴尔的摩太空望远镜科学研究所的米库尔斯基太空望远镜档案馆来获取所有处理过的数据。

世界上最大的天文台是双子座天文台。 双子座天文台由两台先进的天文望远镜组成,它们分别位于赤道两边的美国夏威 夷和智利。通过南北两站的天文望远镜,科学家们可以观测到遥远的星系。在南站望 远镜落成典礼上,双子座天文台台长蒙顿称,这是耗用10年时间、由几百人参与建设 的结果。

双子座的两台望远镜使用了大量新技术, 如巨大的薄型透镜,能从宇宙空间收集和聚 焦光线和红外辐射;自适应光学器件,可校 正因地球大气所产生的畸变等。位于夏威夷的北站望远镜目前已有很多重大的发现,包 括发现星系核心超大黑洞周围的奇观,恒星周围可能形成早期行星系统的气、尘区,以 及拍摄到褐矮星的图像等。

双子望远镜是以美国为主的一项国际工程(其中,美国占50%,英国占25%,加拿大占15%,智利占 5%,阿根廷占25%,巴西占25%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。

该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光。

距离3位引力波科学家捧得2017诺贝尔物理学奖刚刚过去十几天,一场声势浩大又神秘兮兮的发布会再度吸引了全世界的目光。在引力波探测已经日常化的今天,是什么大新闻能惹出这么大的动静呢?答案于昨晚揭晓了。

北京时间10月16日晚10点,一场长达两小时的新闻发布会在华府全国新闻俱乐部(National Press Club)召开,LIGO执行主任大卫·莱兹(David Reitze)宣布,激光干涉引力波天文台(LIGO)和室女座引力波天文台(Virgo)于2017年8月17日首次发现了一种前所未有的新型引力波事件!由两个质量分别为115和16个太阳质量的双中子星并合所产生,根据探测日期确定编号为GW170817,距离我们13亿光年。此外,在全世界众多天文学家及探测设备的协同努力之下,还发现了该引力波事件的电磁对应体。

2016年初,大卫·莱兹曾站在这同一个地方,宣布人类首次探测到了引力波——那时候我们说,多信使天文学新纪元即将开启。在这一次GW170817的探测中,人类首次同时探测到了引力波及其电磁对应体,这可以被视作引力波多信使天文学纪元真正意义上的开端,在天文学发展史上有着划时代的重大意义。另一方面,双中子星合并通常被认为是伽马射线暴的一类产生源,会产生很多不同的观测现象,所以综合引力波、电磁波等多个方式的观测,我们能够对中子星这一充满谜团的天体做出更为详细的了解。

图1:人类首次探测到双中子星合并的引力波以及相对应的电磁信号。

图2:中子星合并产生的引力波和之前黑洞产生的引力波信号持续时间比较图,此次双中子星持续了大约100秒,这里只是展示了50多秒。

图3:可以看出LIGO引力波信号结束的时间和伽玛暴的开始时间相差了大约2秒钟。

正如我们第一次直接探测到黑洞引力波一样,此次探测到双中子星引力波也完全是一个意外,而且来得有点早。此前,科学家们根据对双中子星的了解和LIGO探测灵敏度的分析比较,估计至少要等到aLIGO进一步升级、达到预期灵敏度之后,LIGO/VIRGO才有可能探测到双中子星合并,差不多至少要等到2019年。人类提前两年成功探测到双中子星合并,算得上是一个美好的惊喜了。如果究其原因,除了探测到的这一系统距离我们比较近之外,多方面联合协作是促成此次成功探测的重要因素。

1、全球协作,锁定目标

GW170817的探测过程振奋人心、值得一表,比国际刑警跨洲追捕逃犯还要精彩。

2017年8月17日,分布在全球各地的天文学家们获得了一个消息,LIGO和Virgo探测器探测到了一个持续时间为100秒左右的新引力波信号,其形式与两个中子星的并合相一致。在该引力波信号到达后大约17秒,NASA费米卫星搭载的伽玛暴监测器(GBM)和欧洲INTEGRAL望远镜搭载的SPI-ACS探测器均探测到了一个暗弱的短时标伽马射线暴,并将其命名为GRB170817A。由于二者时间和空间的一致性,被认为与引力波事件成协(“成协”指两种现象是相关的)。

在得知这一消息之后,全世界各地的望远镜就开始了忙碌的观测。在不到11个小时之内,位于智利的Swope超新星巡天(SSS)望远镜首先在星系NGC4993中观测到了明亮的光学源,初步确认为其光学对应体,编号为AT2017gfo/SSS17a。在此之后,其他几个团队分别独立探测到了该光学源,从而加以确认。

在接下来的几个星期之内,天文学家动用了世界上最为先进的一些望远镜,比如钱德拉X射线空间望远镜(Chandra X-ray Telescope),哈勃空间望远镜,位于智利、口径达到84米的甚大望远镜(Very Large Telescope),还有亚毫米波段灵敏度最高的阿塔卡马大型毫米波阵ALMA等等,对该区域开展了紧锣密鼓的观测。这些观测对这一灾变性事件提供了从并合前约100秒到并合后数星期的全面描述,最终证实了科学家的很多猜想:NGC4993星系中的两个中子星并合,产生了引力波、短伽玛暴暴和千新星。

图4:(左)欧南台几个不同望远镜看到引力波源对应的光学图像。(右)哈勃望远镜在不同时间观测到的图像。

此次探测堪称全球协作的一次完美体现,不过,就像大卫·莱兹在发布会上所说,NASA费米卫星伽玛暴信号的探测使得此次LIGO探测大放光彩。尽管引力波信号先于伽马射线信号产生,但有趣的是,NASA费米卫星发送的探测信号要早于LIGO团队的信号。原因在于,NASA费米卫星的伽玛暴监视器在探测到伽玛暴信号GRB170817A之后,自动向GCN系统发送了相关警报。然而,LIGO的自动数据分析就耗时约6分钟——科学家们先是在LIGO汉福德观测站几乎同一时刻的数据中,找到了一个引力波事件候选体GW170817,发现此引力波早于GRB170817A两秒发生,LIGO-Virgo快速响应团队随后手动检查了数据,才向其签订合作协议的组织发布了警报。之后,科学家又进一步在欧洲INTEGRAL卫星的观测数据中确认了伽玛暴信号的存在。本来平淡无奇的伽玛暴信号,因为与一个很强的引力波候选体同时存在,一下子引起了整个天文界的观测兴趣,此天区也成为了一个热门的观测对象。

在9月底的第四次引力波发布会上,姗姗来迟的VIRGO已使得LIGO探测器的空间定位范围从1160平方度收缩到100平方度,二者协同合作,将空间位置的精确性大大提升。如果进一步利用贝叶斯统计方法对所有可能参数进行估算,空间定位将进一步缩减至60平方度。这样一来,空间定位就足足提高了将近20倍。在这次的双中子星事件中,三个探测器最终将产生源定位于一个28平方度的范围之内。正因空间定位准确性大大提高,电磁波段所探测到的空间确认才成为了可能。

图5:目前探测到的5次引力波空间定位比较图,**是最新的引力波GW170817确定的引力波源所在的区域。

联合观测的另一个重要意义是快速反应。无论是费米观测到的伽玛暴,还是LIGO/VIRGO看到的引力波,持续时间都非常短暂,所以需要其它天文台和观测者立即对于可能区域进行后续的追踪观测,这就需要某个系统即时通知可能的位置信息。

对于伽玛暴而言,在上世纪末BeppoSAX卫星在轨工作期间,网络已经兴起,NASA建立了一个伽玛射线暴协调网络(Gamma-ray Coordinates Network, GCN)的邮件系统;一旦某个卫星探测到伽玛暴信号,将会以最快速度把伽玛暴的位置信息发送到此系统中,凡是订阅了该邮件系统的人都能够即时收到提示,以便开展可能的观测。此次费米观测正是利用此系统,将观测信息以最快的速度通知给了全球的很多组织,随后才有众多望远镜纷纷加入观测。当然,对于LIGO/VIRGO组织而言,为了保证其可能的后续观测,他们与全球近70个观测组织(中国有将近10个组织)签订了备忘录合同,一旦引力波信号被探测到,也会通过其特有的渠道传递相关信息。

2、比双黑洞合并更美的双中子星合并

正如发布会提到的,这次探测到的引力波是由双中子星合并而产生,之前公布的4例引力波事件都是由双黑洞所产生。二者之间最大的差别就在于,双中子星合并会产生电磁波辐射,而对于黑洞而言,我们通常认为不会产生,这一点也得到了观测上的验证。

是什么原因导致了此种差别呢?通常而言,按照天体物理辐射的理论要求,要产生电磁辐射,天体周围必须要有气体的存在。对于黑洞系统而言,尽管在最初产生时,黑洞周围可能有很多气体,然而在漫长的演化过程当中,如果没有更多气体来源的话,在黑洞合并的最后阶段,气体已消耗完毕,所以无法产生电磁辐射,只能产生扰动时空的引力波——就像科学家前4次探测到的那样。

在双中子星合并之前,周围的气体很可能也已消耗完毕。然而,合并过程当中会有部分物质以接近光速或远低于光速的速度被抛射出去,从而产生我们看到的各种电磁现象——短时标伽马射线暴(简称伽玛暴)、伽玛暴余辉和千新星。接近光速运动的物质产生了费米卫星看到的伽玛暴,而低速运动的物质产生了千新星,被很多的光学/红外望远镜捕捉到。

等等,短时标伽马射线暴、伽玛暴余辉和千新星都是什么?让我们一一说来。

简单来说,伽玛暴是天空中某一个方向伽马射线辐射突然增亮的现象,可以说是宇宙间自大爆炸之后最为剧烈的天体爆发现象。20世纪90年代初,康普顿伽马射线天文台在观测到上千个伽玛暴之后做了一个简单统计,按照它们持续时间的长短分为两大类:一类是爆发时间长于2秒的长时标伽玛暴,另一类是爆发时标短于2秒的短时标伽玛暴。后经深入研究发现,这两种伽玛暴的产生起源完全不同。

根据目前的理解,无论是大质量恒星坍缩形成的长时标伽玛暴,还是双致密星产生的短时标伽玛暴,尽管中心天体会有差别(或者是黑洞,或者是转动极快的磁星),伽玛暴的产生机制以及之后的演化都可以用一个被称为“火球”模型(fireball model)的理论来解释。在这个理论中,中心天体会在一段时间内,产生相对持续的极端相对论喷流,这就意味着,这些喷出物质会以接近光速速度,沿着天体的转轴方向向外运动。因为喷射出去的物质之间存在着速度上的微小差别,导致它们彼此发生碰撞,将自身运动的动能转化为气体粒子的热能,而后在磁场作用下产生我们所看到的高能辐射,也就是早期的伽马射线,这就很好地解释了我们所看到的伽玛暴。大质量恒星产生的喷流时间长,双中子星合并产生的喷流时间短,从而导致了我们观测上的差别。

这些星体周围存在着星际气体介质,喷流物质在停止相互碰撞之后会继续向外运动,与周围的气体介质发生相互作用,把自身运动的能量传递给周围的星际气体,星际气体被加热从而产生较强的辐射,这就是所谓的伽玛暴余辉。它的能谱(energy spectrum)波段会从X射线一直延伸到射电波段。在一定程度上,余辉的强弱与周围星际气体的密度相关,密度更高,余辉也就更亮。

此次与引力波相关的伽玛暴属于短时标伽玛暴,因为费米卫星观测到的爆发时标为07秒。除此之外,无论是引力波的结果还是电磁波的观测拟合结果,也都和双中子星合并的预期相一致。例如,引力波波形的拟合告诉了我们中子星的质量,与中子星的质量范围一致。

在双中子星合并的过程当中,有大约1/1000到1/100左右太阳质量的物质沿各个方向被抛射出去,形状近似于一个球体。这些抛射出去的物质通过快中子俘获过程产生大量的重元素。这些元素很不稳定,能够快速衰变,产生辐射加热抛射物,从而使其发出明亮的可见光以及近红外辐射,其亮度通常会达到千倍的新星级别,故被称为“千新星”。因为这个千新星距离地球很近,所以非常明亮,是之前探测到的短时标伽玛暴距离的十分之一。

图6:双中子星旋近,最终合并产生千新星的过程。

因为产生引力波的天体完全不同,所以我们观测到的引力波形会存在较大差别。中子星的质量相较于黑洞要小很多,合并过程中对于时空的扰动变形程度更弱,所以,在目前探测器灵敏度确定的情况下,我们只可能探测到比较临近的引力波信号。这次的引力波源距离我们13亿光年,是目前探测到的所有引力波源中最近的一例。通过波形的拟合,科学家们确定了两个中子星的质量分别大约是115和16个太阳质量,合并后的天体质量约为274个太阳质量,抛射出去的仅有001个太阳质量。

3、已解之惑与未解之谜

此前,无论是对于中子星本身,还是双中子星合并产生的伽玛暴,我们还有很多的疑难问题有待解答。双中子星合并之后,产生的是转速更快的中子星还是黑洞?有多少物质会在爆发中被抛射出去?喷流的机制和喷流的夹角是怎样的?我们都还不能确定。

此外,到目前为止,科学家对于中子星内部的组成和结构仍不是特别清楚。而当两个中子星互相靠近但未合并之时,两个中子星会被彼此的潮汐力拉扯严重变形,从而最终影响旋近的速度,也会影响产生的引力波波形。所以,科学家们希望,引力波和电磁波的联合观测能够对这些问题提供一部分珍贵的答案。

遗憾的是,受限于目前引力波探测设备的灵敏度,引力波信号曲线并不是很好,所以对于有关内部结构的问题并没有得到解答。但是,对于部分合并之后抛出了多少物质的问题,我们已经初步有了答案。值得骄傲的是,这一答案是由一部参与观测的中国望远镜给出的。(答案后文马上揭晓)

双中子星合并之后是产生了中子星,还是产生了黑洞?现在依然无法确定。因为通过引力波波形的拟合,合并后的质量约为274太阳质量。从理论上说,如果一个天体的质量超过3个太阳质量,通常会被认为是黑洞。而中子星的最大允许值并不明确,如果中子星的内部由中子构成,综合考虑状态方程和转速,要想达到274个太阳质量不太可能。然而如果内部由其他的奇异物质(比如夸克)构成的话,在一定条件下,这个质量的天体就有一定可能性,此时这一天体应该被称为“夸克星”。不过,目前所有观测都没能给出中子星和黑洞的临界质量,当然也没能给出夸克星存在的证据。从观测的角度而言,我们观测到的最重的中子星大约是2个太阳质量,最小质量的黑洞质量是5个太阳质量;在这两者之间,一片空白,还未发现任何致密天体的质量属于这个范围。所以,对于此次双中子星合并产生的274个太阳质量的天体,尽管我们还不能确定它到底是什么,但是这一发现填补了黑洞和中子星之间的空白,为日后更多的天文发现掀起了帷幕的一角。

图7:目前所探测到的黑洞和中子星质量分布图,可以看到两者之间存在一个很大的空白,此次探测是第一个填进此空白区域的天体。

尽管科学家们没有看到中子星内部信息,也不知道最终的合并物是什么,但众多后续电磁观测还是告诉我们了一些之前不太确定的信息,比如甚大望远镜(VLT)的光谱观测确认了重金属(比如我们熟知的金银等元素)的来源,大多数就是在中子星合并的过程当中产生的。

图8:元素起源表。**代表了并合中子星所产生的元素,我们常见的金银就是通过此过程产生的。

之前科学家曾在短时标伽玛暴中探测到了3起疑似千新星事例,但只不过是在余辉的光变曲线当中看到了几个数据点而已。因为此次由于距离很近,而且伽玛暴余辉很弱,所以完全确认了千新星的存在。另外,通过对于其光变曲线演化的拟合可以推断,大约有百分之一的物质在合并过程中被抛射出去。

除此之外,电磁信号和引力波信号的结合对于天文学理论本身有何促进意义呢?一方面,科学家可以通过这两个信号到达的时间差,来检验爱因斯坦的弱等效原理,这是爱因斯坦广义相对论和其它引力理论的基石,爱因斯坦的理论再一次通过了检验。

另外,引力波信号和电磁信号相结合,可以对宇宙学的一些最基本参数做出限制,比如用来描述宇宙膨胀快慢的哈勃常数。通过引力波的振幅比对可以推断出系统到我们的光度距离,通过电磁波段的光谱分析,我们便可以知道这一系统的红移;在给定两者的情况之下,我们便能够推算出哈勃常数的数值了:

相较于来自普朗克卫星的数值:

很明显,引力波给出的数值误差很大。但可以预见的是,随着探测精度的提高(除LIGO/VIRGO之外,日本臂长为3公里KAGRA探测器也开始测试,LIGO-India以及很多的第三代引力波探测器在计划之中)以及探测到的引力波源数目的增多,这个误差很快将得到改进。

此次引力波现象发生在南天的长蛇座,北天的望远镜很难看到,所以中国的大多数望远镜没能进行观测,比如刚刚建成的FAST以及很多光学望远镜(云南丽江的24米望远镜和国家天文台兴隆观测站的216米光学望远镜等)。

不过幸运的是,中国有两台望远镜参与了此次观测,一个是位于南极Dome A的50厘米的南极光学巡天望远镜(AST3),项目的负责人是紫金山天文台的王力帆研究员。在引力波源信息发布的约一天后,AST3望远镜开展了对于这个目标源的观测。而当时南极的冬天也刚刚过去,目标天体的地平高度较低,受于太阳的限制,每天差不多有2个小时左右的观测时间。此望远镜最终进行了10天的观测,最终得到了目标天体的光变曲线,与巨新星理论预测高度吻合。

另外一个参与观测的是硬X射线调制空间望远镜(又名慧眼)。在观测消息发布时,事件刚好在其观测范围之内,不过很遗憾的是,尽管慧眼是此能段内灵敏度最高的观测设备,但是未能在02-5 MeV的能段内探测到任何电磁信号,这很可能与此伽玛暴并非完全正对我们有关。

这是人类历史上第一次同时探测到引力波及其电磁对应体,将成为引力波天文学上另外一个非常重要的里程碑。此次探测为我们解答了一些疑惑,同时也提出了更多问题,与历史上所有天文发现一样,是人类好奇心的胜利与新起点。在多信使引力波天文学时代的帷幕由此拉开之后,我们相信,在人类团结协作的力量之下,更多的宇宙奥秘将被一一揭晓。

在过去的17年里,天文学家们用多个地面望远镜观测海王星,发现这颗冰巨星的全球温度出现了惊人的下降,随后在这颗行星的南极出现了急剧变暖的趋势。

海王星在距离太阳45亿公里的地方绕太阳运行,它也像地球一样经历季节——只是持续时间长得多。海王星上的一年可以持续大约165个地球年,所以一个季节可以持续大约40年。自2005年以来,海王星的南半球一直处于夏季。

天文学家们计划,一旦那年的夏至到来,就开始追踪这颗行星的大气温度。

自那以后拍摄的近100张海王星热图像显示,海王星的大部分时间在逐渐冷却,在2003年至2018年期间下降了8摄氏度。

关于这一现象的一项研究发表在周一的《行星科学杂志》(Planetary Science Journal)上。

然后,在2018年至2020年期间,海王星的南极发生了戏剧性的变暖事件,温度上升了11摄氏度。这个温暖的极地涡旋完全逆转了之前发生的冷却现象。

迄今为止,海王星上从未出现过这种极地变暖现象。

在2018年到2020年之间,海王星的南极可以看到越来越亮的光,表明了变暖的趋势。

这些照片是由欧洲南方天文台的望远镜和位于智利的南双子座望远镜,以及夏威夷的斯巴鲁望远镜、凯克望远镜和北双子座望远镜,以及美国宇航局现已退役的斯皮策太空望远镜拍摄的。海王星的平流层(即活跃的气象层上方的大气带)发出的红外光帮助天文学家探测到温度波动。

冰冻海王星的平均温度为零下220摄氏度,天文学家仍然不知道是什么导致了温度的变化。

目前,他们认为这些意外的变化可能是由多种因素造成的。

“温度的变化可能与海王星大气化学的季节性变化有关,它可以有效地改变大气冷却的程度,”罗曼说。“但天气模式的随机变化,甚至是对11年太阳活动周期的响应,也可能产生影响。”

需要更多的观察才能真正 探索 这些可能性。今年晚些时候,詹姆斯·韦伯太空望远镜将观测到天王星和海王星。太空天文台的中红外仪器可以绘制海王星大气中的化学成分和温度,并可以确定是什么导致了这种变化。

海王星离太阳的距离是地球的30多倍,它是太阳系中唯一一颗在地球上肉眼看不到的行星。到目前为止,只有NASA的旅行者2号飞船再1989年曾近距离飞越海王星。

“我认为海王星本身对我们很多人来说非常有趣,因为我们仍然对它知之甚少,”罗曼说。“这些都指向更复杂的海王星大气图,以及它是如何随时间变化的。”

一、加那列大型望远镜

加那列大型望远镜是全球十大天文望远镜之一,位于西班牙帕尔马加那列岛屿上的一个小岛上面。这个望远镜是西班牙政府和墨西哥研究机构以及美国佛罗里达州大学共同建造的一个大型的望远镜,据说这个大型的望远镜投资175亿美元。

二、凯克望远镜

凯克望远镜位于夏威夷莫纳克亚山顶。是由36块镜面六角形组件构成,主要有3个设备近红外摄像仪和高色散光谱仪以及高分辨率CCD探测器等。这个大型的天文望远镜的精度能够达到毫微米程度。天文学家想要使用这个望远镜必须得到审批,在委员会的协助下才能够操作。

三、非洲南部大型望远镜

非洲南部大型望远镜位于非洲南部的的山顶上,这个天文望远镜是南半球最大的一个单光学望远镜,是由91块镜面六角形组件构成,这款天文望远镜可以探测到月球距离如同烛光的微弱光线,2005年的时候这个望眼镜开始投入使用,来自美国和德国以及新西兰等国家的天文学家都使用过这个大型的望远镜。

四、霍比-埃伯利望远镜

霍比-埃伯利望远镜位于美国,被称为HET。这个望远镜和非洲南部望远镜有些相似。霍比-埃伯利望远镜可以探测到比肉眼可观测光线暗1亿倍的宇宙光线。这个望远镜能够吸收大型的光线特别是光谱仪。

五、大型双筒望远镜

大型双筒望远镜又被称为LBT,第一个天文望远镜是2004年代额时候在美国亚利桑那州格雷厄姆山顶上架设,第二个天文望远镜是在2005年的时候安装的,这两个望远镜能够实现合并式的观测,拍摄的照片很美。

六、昴宿星团望远镜

昴宿星团望远镜直径为82米,是一台光学和视觉红外线天文望远镜,这个望远镜总共有3个特点,第一就是镜面薄是通过主动光学和自适应光学来获得比较高的成像质量的,第二个优点是能够实现高精度的跟踪,第三个优点采用圆柱形观测室能够自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。这款望远镜拥有全球最大的望远镜单镜片,很多国家的天文学家都可以使用。

七、欧洲南方天文台甚大望远镜干涉仪

欧洲南方天文台甚大望远镜干涉仪位于智利塞罗-帕拉纳山上面,这个大型的天文望远镜是由4个82米直径望远镜构成。是全球十大天文望远镜之一,能够单独操作甚大望远镜能够提供比较详细的观测资料,能够捕捉十亿分之一秒的星体运动变化。

八、双子望远镜

双子望远镜不是两个相邻的望远镜,它们分别位于东西半球的两个天文观测点。位于北半球的天文望远镜可以与夏威夷莫纳克亚山的其他望远镜协同操作。将望远镜放在两个半球能够方便于进行全天候的系统观测。

九、多镜面望远镜

多镜面望远镜又被称为MMT,这个望远镜65米直径的主镜面具有特殊轻重量蜂巢设计。这个多镜面望远镜被称为艺术级别的建筑,外形比较独特,不具备传统天文台的圆顶结构。将天文台的墙壁和顶部与望远镜结合在一起能够提高观测的效率。地址位于美国亚利桑那州图森市霍普金斯山上。

十、麦哲伦I & II望远镜

麦哲伦I & II望远镜位于智利阿塔卡马沙漠的高处。是目前新建造的一个双体望远镜。这两个望远镜相隔200英尺。望远镜的65米直径镜面漂浮在高压油薄膜上,摩擦力比较小,小孩子能够推动这个150吨的望远镜。

用反射镜作物镜的望远镜。反射望远镜光学性能的重要特点是没有色差。其他像差在理论上虽然可以得到消除,但工艺复杂,实用的反射望远镜为了避免像差,视场一般比较小,可以通过像场改正透镜扩大视场。反射镜的材料要求膨胀系数小,应力较小和便于磨制。镜面通常镀铝,在红外区及紫外区都能得到 较好的反射率。反射望远镜的镜筒一般比较短,便于支撑。现代高科技反射望远镜还具有镜面自适应光学系统和主动光学系统,可以补偿大气扰动干扰和镜面应力及风力引起的变形抖动。

中国目前最大的光学望远镜是216米。目前世界上最大的望远镜是位于夏威夷的凯克望远镜,直径10米,由36面18米的六角型镜面拼合而成,耗资一亿三千万美元,主要是由美国的一个企业家凯克捐助修建的,第一面凯克望远镜建造成功后,凯克基金会又投资修建了凯克二号望远镜,两座挨在一起,威力无比;另外的大型望远镜有美国国立天文台位于南北两半球的两个八米望远镜,一座位于夏威夷,一座位于智利,合称双子座望远镜;日本人在夏威夷建造了一座八米的称为昴星团望远镜;下世纪欧洲南方天文台将建成四座八米望远镜,组合口径相当于15米。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1160875.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-14
下一篇2023-09-14

发表评论

登录后才能评论

评论列表(0条)

    保存