公元1054年7月4日,我国北宋仁宗至和元年的五月二十六日,大约天亮时分,开封府东南方向的天空中出现了一颗极亮的大星,因其出现在天关(即金牛座)位置,宋代司天监的天文研究者们称其为“天关客星”。这一天文事件被多部史书记载了下来——
据《宋史·天文志·第九》,这颗星于“至和元年五月己丑,出天关东南可数寸,岁余稍没”;《宋会要》记载:“嘉祐元年三月,司天监言:‘客星没,客去之兆也’。初,至和元年五月,晨出东方,守天关,昼见如太白,芒角四出,色赤白,凡见二十三日”。
这是 历史 上最早记载恒星爆炸的文字,也即当今天文学界非常著名的蟹状星云的前身恒星初始爆炸时候的情景。尽管其距离在地球6500光年远的地方,人们在地球上的白天,仍能看到它的光亮。
距离蟹状星云爆炸后967年,近日,地球再次收到从金牛座传回的“讯息”——
同时,这次观测还记录到能量达11拍电子伏(拍=千万亿)的伽马光子,由此确定在大约仅为太阳系1/10大小的(约5000倍日地距离)星云核心区内存在能力超强的电子加速器,加速能量达到了人工加速器产生的电子束的能量(欧洲核子研究中心大型正负电子对撞机LEP)两万倍左右,直逼经典电动力学和理想磁流体力学理论所允许的加速极限。此次观测结果是基于LHAASO 1/2 阵地和 3/4 阵地过去14个月观测的成果,已于今日(7月9日)在《科学》(Science)上发表,由中国科学院高能物理研究所牵头的LHAASO国际合作组完成。
在成果发布前夕,中国科学院高能所研究员、高海拔宇宙线观测站首席科学家曹臻专程从北京飞到成都,接受一众媒体采访。“这是在四川发现的成果,一定要在四川讲出来!”他说。
此次研究发现意义何在?LHAASO的科学目标是什么?
曹臻
为超高能区标准烛光设定亮度标准
“这把尺子,被我们中国人找到了!”
红星新闻: 此次成果除了观测到11拍电子伏光子,还实现了前所未有的超高能区(03-11拍电子伏)的精确测量,其意义何在?
曹臻: 除了带来其自身对物理理解的理论模型外,蟹状星云还有一个更为重要的功能,即为该能区标准烛光设定了亮度标准。在最高能段的标准里,在LHAASO之前,没有任何手段可以检测。也就是说,LHAASO开辟了全新的未知领域,且制定了这个领域的实验调查发展的标准。
打个比喻,就像提供了一把标准计量的尺子,将来此类实验,都要以此来检测探测器的测量是否准确。而这把尺子,被我们中国人找到了!
红星新闻: 什么是标准烛光?
曹臻: 目前北半球只有蟹状星云一个标准烛光,标准烛光应用在天文观测上,其作用有2个:位置和亮度。
具体来说,天文望远镜要精准测量一个星体的具体位置,就要用蟹状星云来表明探测器方位。
从亮度来说,在万亿亿倍的范围上,蟹状星云是为数极少的在射电、红外、光学、紫外、X射线和伽马射线波段都有辐射的天体, 历史 上对其光谱已经进行了大量的观测研究,是非常明亮且稳定的高能辐射源,因此在多个波段它被作为标准烛光,也即是测量其它天体辐射强度的标尺。如果落在能量范围内的光子在此次制定的物理模型范围内,就证明亮度测对了。
高海拔宇宙线观测站(LHAASO) 图据高能所
红星新闻: 您所提到的“星云核心区内存在能力超强的电子加速器,加速能量达到了人工加速器产生的电子束的能量两万倍左右”,此发现意义何在?未来可运用在哪些领域?
曹臻:除了直逼经典电动力学和理想磁流体力学理论所允许的加速极限,未来我们还可能找到和人类制造的地面加速器完全不一样的加速机制和方式,对未来地面加速器的 设计和建造有重大指导意义。
此次研究成果主要用于基础物理的研究 探索 。未来如果我们能造出更高效率的加速器,这些加速器就可用于癌症治疗和诊断等领域。比如,现在的加速器只在大型医院使用,未来这些设备可能更加小型化,在一些小医院里就可以使用。
红星新闻: 这次的发现也是“千年等一回”,为何距离上一次重大发现,中间隔了那么长时间?
曹臻: 科技 发展是主要因素。古代只能用肉眼观看,现在有各种各样的波段测量仪器和手段,从贵州的500米口径球面射电望远镜(FAST)到LHAASO,其中覆盖的能量范围是 万亿亿倍,包括射电、红外、光学、紫外、X射线和伽马射线波段,LHAASO还覆盖了更高能量的波段。
此外,蟹状星云爆炸后的遗迹星云至今的辐射也比太阳大,爆炸后形成的中子星直径约25公里,以每秒30圈的速度急速旋转着,整个星体至今仍以每秒1000~1500公里的速度扩张着。经过近一千年左右的扩展,高速旋转的超强磁场将脉冲星表面磁层中的大量正负电子持续不断地吹向四周,形成一股速度近乎光速的强劲星风。星风中的电子与外部介质碰撞后会被进一步加速至更高能量并产生我们看到的星云。
要注意的是,尽管蟹状星云在不断扩大,但它的大小实际上只有0005度,我们在地球上以6500光年的距离看它,肉眼依然分辨不出,只有通过天文望远镜才能看到它的面貌。
红星新闻: 那我们是否会和贵州的FAST进行合作?
曹臻: 当然!我们前面提到,FAST到LHAASO,其中覆盖的能量范围是 万亿亿倍,FAST正好是最低的一段,LHAASO是最高的一段,要对此现象进行一个完整深入研究,一定要开展多波段的综合统一研究。在多波段研究中,我们已经和FAST提出多个源的观测申请。最终目的,是通过研究这些特殊的天体,找到宇宙线起源,搞清楚起源的机制是什么。从科学上来讲,这也是我们最终要实现的目标。
高海拔宇宙线观测站(LHAASO) 图据高能所
LHAASO今年8月正式投运
“将有更多激动人心的科学突破”
红星新闻: 时隔近一千年,蟹状星云再次被我们中国人、被四川的科学观测站捕捉到了,对此您有何感受?
曹臻: 肯定很自豪。在天文 历史 中,蟹状星云有很多个“第一”,但这一次的“第一”不太一样,因为我们所观测到的11拍电子伏,可能是能观测到的最高能量段,是一个全新的未知领域。在LHAASO建造前,欧洲和美国主流的伽马光子的探测是天文望远镜,其能捕捉到的 最高能量为01个拍电子伏。在过去二、三十年中,发表在《科学》上的,都是几十个零点零几拍电子伏的观测。原因是随着能量升高,电子强度越来越低,如果没有像LHAASO这样高灵敏度的大型探测器,是无法将其捕捉的。这也是此次统计数据尤为重要的原因。
NASA发布的蟹状星云中心,中心有最明亮的一颗中子星。图源/IC photo
同时,LHAASO可能在未来十年乃至二十年内,都是一个国际领先的大科学装置。可以看到,中国人在科学上的贡献,已经变得越来越重要。
红星新闻: 上一次发布LHAASO观测到的成果是5月17日,不到两个月时间,我们就发布了2次重大成果,对于这个频率您如何看?
曹臻: 无论是速度还是更高能量级的发现,都大大超出了我们的预期。值得一提的是,LHAASO是一个非常综合性的探测装置, 它一共 有4种探测器, 这4种探测器对于宇宙线的现象,从不同角度立体地进行观测,因此它提供了一个非常丰富的宇宙线的知识测量。除了研究基础物理的内容以外,它还可以研究气象、雷电、太阳活动等等,这些领域的研究也正在逐渐开展。
红星新闻: 能否介绍下LHAASO的建设节点和未来三五年的中远期规划?
曹臻: 目前LHAASO阵列 探测器的安装已全部结束,已进入探测器调试的最后阶段,预计今年7月底可以达到完全观测的条件,8月正式投入运营,年底前完成验收。
LHAASO的未来规划依然是天文观测。目前我们已经发现有12个宇宙线起源的候选天体,未来几年,我们会像此次发布的蟹状星云成果一样,对 这些源去做深入研究。LHAASO的潜力巨大,目前我们的成果仅仅是冰山一角,一旦阵列正式运行,可以预见的是,未来将有更多激动人心的科学突破。
编辑 陈怡西
(下载红星新闻,报料有奖!)
超新星“天关客星”爆发后形成蟹状星云(NGC 1952)。
NGC 1952(蟹状星云、M1)位于金牛座ζ星东北面,距地球约6500光年。它是个超新星残骸。NGC1952是一团无定形的膨胀气体云。由超新星炸出的物质组成,已经扩散到直径约10光年的范围内,并且仍以高达1,800千米/秒的超高速向外膨胀。NGC 1952刚好位到银河中心。中国宋朝司天监对那次爆发作出过观测,史料中有以下记载:“己丑,客星出天关之东南可数寸。嘉祐元年三月乃没。”
金牛座的男生比较务实,说难听点就是很现实。他考虑了你和他的现实情况,觉得你们不适合做恋人。至于他为什么还和你联系,应该是因为你俩分手的原因并不是一方出轨或者伤害了对方。
位于天关(金牛座ζ)的西北面约115度的地方,是著名的行星状星云,是梅西叶星表中的第1个天体,因内部纤维状结构像螃蟹而得名。
蟹状星云就是1054年7月4日被中国古人观测并记录下来的超新星爆发(天关客星)后剩下的残骸,也是证明行星状星云是超新星爆发的遗迹的有力证据。蟹状星云现在只有84等,需要使用天文望远镜才能观测到。
金牛座α毕宿五:
金牛座α(毕宿五)是一颗光谱型为K5 III的橙色巨星,是金牛座最亮的恒星,视星等约为085等,在全天恒星(除太阳)中排名第13。
金牛座β五车五金牛座β(五车五)是一颗光谱型为B7III的巨星,位于金牛座和御夫座的边界上。长期以来,五车五被划为御夫座的一员,但后来IAU规定他为金牛座的一颗星。在中国古代星官体系中,五车五也属于现在被称为御夫座的“五车”星官。
金牛座T金牛座T是一个变星,它是一类被称为金牛T星变星的原型。这颗恒星是英国天文学家约翰·罗素·欣德于1852年10月发现的。它可以在金牛座ε附近找到,但位于它后面420光年处。
根据中国历史记载,在现在蟹状星云的那个位置上,曾经有过超新星爆发,那就是1054年7月4日(宋仁宗至和元年的五月己丑)大约寅时出现的、特亮的天关星“天关客星”。
天关客星
中国宋朝司天监对那次爆发作出过观测,史料中有以下记载:
“己丑,客星出天关之东南可数寸。嘉祐元年三月乃没。”见:李焘,《续资治通鉴长编》(北京:中华书局,2004二版),卷176,页4263)
《宋史·天文志-第九》:“至和元年五月己丑,出天关东南可数寸,岁余稍没。”
《宋史·仁宗本纪》:“(嘉佑元年三月)辛未,司天监言:自至和元年五月,客星晨出东方,守天关,至是没。”
《宋会要》:“嘉佑元年三月,司天监言:‘客星没,客去之兆也’。初,至和元年五月,晨出东方,守天关。昼如太白,芒角四出,色赤白,凡见二十三日。”
日本《明月记》:“天喜二年四月中旬以后,丑时客星出觜参度,见东方,孛天关星,大如岁星。”
总括以上文字,可得知在“宋至和元年五月己丑”(即1054年7月4日)开始,有“客星”出现在天关(即金牛座ζ星)附近,星的颜色是赤白。在最初的23天,即使在白昼,其光度如“太白”(即金星)。直至一年多后的“嘉祐元年三月辛未”(即1056年4月5日)才消失不见。
这个客星真是一个“不速之客”,来了就不走。在23天的时间里,像太白金星一样亮,白天都可以看到,即所谓“昼见如太白”“凡见二十三日”。客星看不到的日期是1056年4月6日,距离客星出现的日期1054年7月4日已经整整过了643天。在这将近两年的时间里,只要能看到客星。司天监的人员总是坚持不懈地进行观测,他们详细地记录了客星的位置、颜色和亮度变化。这些详细的观测资料虽然大部分已经遗失,但仅是这流传下来的简短记载,已经使后人敬佩不已了。
恒星
由炽热气体组成的、能自己发光的球状或类球状天体。离地球最近的恒星是太阳。其次是半人马座比邻星,它发出的光到达地球需要422年,晴朗无月的夜晚,在一定的地点一般人用肉眼大约可以看到 3,000多颗恒星。借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有一、二千亿颗。恒星并非不动,只是因为离开我们实在太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体,叫作恒星。
测定恒星距离最基本的方法是三角视差法,先测得地球轨道半长径在恒星处的张角(叫作周年视差),再经过简单的运算,即可求出恒星的距离。这是测定距离最直接的方法。但对大多数恒星说来,这个张角太小,无法测准。所以测定恒星距离常使用一些间接的方法,如分光视差法、星团视差法、统计视差法以及由造父变星的周光关系确定视差,等等(见天体的距离)。这些间接的方法都是以三角视差法为基础的。
恒星的亮度常用星等来表示。恒星越亮,星等越小。在地球上测出的星等叫视星等;归算到离地球10秒差距处的星等叫绝对星等。使用对不同波段敏感的检测元件所测得的同一恒星的星等,一般是不相等的。目前最通用的星等系统之一是U(紫外)B(蓝)、V(黄)三色系统(见测光系统'" class=link>测光系统);B和V分别接近照相星等和目视星等。二者之差就是常用的色指数。太阳的V=-2674等,绝对目视星等M=+483等,色指数B-V=063,U-B=012。由色指数可以确定色温度。
恒星表面的温度一般用有效温度来表示,它等于有相同直径、相同总辐射的绝对黑体的温度。恒星的光谱能量分布与有效温度有关,由此可以定出O、B、A、F、G、K、M等光谱型(也可以叫作温度型)温度相同的恒星,体积越大,总辐射流量(即光度)越大,绝对星等越小。恒星的光度级可以分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次称为超巨星、亮巨星、巨星、亚巨星、主序星(或矮星)、亚矮星、白矮星。太阳的光谱型为G2V,颜色偏黄,有效温度约5,770K。A0V型星的色指数平均为零,温度约10,000K。恒星的表面有效温度由早O型的几万度到晚M型的几千度,差别很大。
恒星的真直径可以根据恒星的视直径(角直径)和距离计算出来。常用的干涉仪或月掩星方法可以测出小到0001的恒星的角直径,更小的恒星不容易测准,加上测量距离的误差,所以恒星的真直径可靠的不多。根据食双星兼分光双星的轨道资料,也可得出某些恒星直径。对有些恒星,也可根据绝对星等和有效温度来推算其真直径。用各种方法求出的不同恒星的直径,有的小到几公里量级,有的大到10公里以上。
只有特殊的双星系统才能测出质量来,一般恒星的质量只能根据质光关系等方法进行估算。已测出的恒星质量大约介于太阳质量的百分之几到120倍之间,但大多数恒星的质量在01~10个太阳质量之间恒星的密度可以根据直径和质量求出,密度的量级大约介于10克/厘米(红超巨星)到 10~10克/厘米(中子星)之间。
恒星表面的大气压和电子压可通过光谱分析来确定。元素的中性与电离谱线的强度比,不仅同温度和元素的丰度有关,也同电子压力密切相关。电子压与气体压之间存在着固定的关系,二者都取决于恒星表面的重力加速度,因而同恒星的光度也有密切的关系(见恒星大气理论)。
根据恒星光谱中谱线的塞曼分裂(见塞曼效应)或一定波段内连续谱的圆偏振情况,可以测定恒星的磁场。太阳表面的普遍磁场很弱,仅约1~2高斯,有些恒星的磁场则很强,能达数万高斯。白矮星和中子星具有更强的磁场。
化学组成 与在地面实验室进行光谱分析一样,我们对恒星的光谱也可以进行分析,借以确定恒星大气中形成各种谱线的元素的含量,当然情况要比地面上一般光谱分析复杂得多。多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多。按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等。但也有一部分恒星大气的化学组成与太阳大气不同,例如沃尔夫-拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)在金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强。但是,这能否归结为某些元素含量较多,还是一个问题。
理论分析表明,在演化过程中,恒星内部的化学组成会随着热核反应过程的改变而逐渐改变,重元素的含量会越来越多,然而恒星大气中的化学组成一般却是变化较小的。
物理特性的变化 观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间的推移发生周期的、半规则的或无规则的变化。这种恒星叫作变星。变星分为两大类:一类是由于几个天体间的几何位置发生变化或恒星自身的几何形状特殊等原因而造成的几何变星;一类是由于恒星自身内部的物理过程而造成的物理变星。
几何变星中,最为人们熟悉的是两个恒星互相绕转(有时还有气环或气盘参与)因而发生变光现象的食变星(即食双星)。根据光强度随时间改变的“光变曲线”,可将它们分为大陵五型、天琴座β(渐台二)型和大熊座W型三种几何变星中还包括椭球变星(因自身为椭球形,亮度的变化是由于自转时观测者所见发光面积的变化而造成的)、星云变星(位于星云之中或之后的一些恒星,因星云移动,吸光率改变而形成亮度变化)等。可用倾斜转子模型解释的磁变星,也应归入几何变星之列。
物理变星,按变光的物理机制,主要分为脉动变星和爆发变星两类。脉动变星的变光原因是:恒星在经过漫长的主星序阶段以后(见赫罗图),自身的大气层发生周期性的或非周期性的膨胀和收缩,从而引起脉动性的光度变化。理论计算表明脉动周期与恒星密度的平方根成反比。因此那些重复周期为几百乃至几千天的晚型不规则变星、半规则变星和长周期变星都是体积巨大而密度很小的晚型巨星或超巨星周期约在1~50天之间的经典造父变星和周期约在,005~15天之间的天琴座RR型变星(又叫星团变星),是两种最重要的脉动变星。观测表明,前者的绝对星等随周期增长而变小(这是与密度和周期的关系相适应的),因而可以通过精确测定它们的变光周期来推求它们自身以及它们所在的恒星集团的距离,所以造父变星又有宇宙中的“灯塔”或“量天尺”之称。天琴座RR型变星也有量天尺的作用。
还有一些周期短于03天的脉动变星 (包括'" class=link>盾牌座型变星、船帆座AI型变星和型变星'" class=link>仙王座型变星等),它们的大气分成若干层,各层都以不同的周期和形式进行脉动,因而,其光度变化规律是几种周期变化的迭合,光变曲线的形状变化很大,光变同视向速度曲线的关系也有差异。盾牌座δ型变星和船帆座AI型变星可能是质量较小、密度较大的恒星,仙王座β型变星属于高温巨星或亚巨星一类。
爆发变星按爆发规模可分为超新星、新星、矮新星、类新星和耀星等几类。超新星的亮度会在很短期间内增大数亿倍,然后在数月到一、二年内变得非常暗弱。目前多数人认为这是恒星演化到晚期的现象。超新星的外部壳层以每秒钟数千乃至上万公里的速度向外膨胀,形成一个逐渐扩大而稀薄的星云;内部则因极度压缩而形成密度非常大的中子星之类的天体。最著名的银河超新星是中国宋代(公元1054年)在金牛座发现的“天关客星”。现在可在该处看到著名的蟹状星云,其中心有一颗周期约33毫秒的脉冲星。一般认为,脉冲星就是快速自转的中子星。
新星在可见光波段的光度在几天内会突然增强大约9个星等或更多,然后在若干年内逐渐恢复原状。1975年8 月在天鹅座发现的新星是迄今已知的光变幅度最大的一颗。光谱观测表明,新星的气壳以每秒500~2,000公里的速度向外膨胀。一般认为,新星爆发只是壳层的爆发,质量损失仅占总质量的千分之一左右,因此不足以使恒星发生质变。有些爆发变星会再次作相当规模的爆发,称为再发新星。
矮新星和类新星变星的光度变化情况与新星类似,但变幅仅为2~6个星等,发亮周期也短得多。它们多是双星中的子星之一,因而不少人的看法倾向于,这一类变星的爆发是由双星中某种物质的吸积过程引起的。
耀星是一些光度在数秒到数分钟间突然增亮而又很快回复原状的一些很不规则的快变星。它们被认为是一些低温的主序前星。
还有一种北冕座 R型变星,它们的光度与新星相反,会很快地突然变暗几个星等,然后慢慢上升到原来的亮度。观测表明,它们是一些含碳量丰富的恒星。大气中的碳尘埃粒子突然大量增加,致使它们的光度突然变暗,因而也有人把它们叫作碳爆变星。
随着观测技术的发展和观测波段的扩大,还发现了射电波段有变化的射电变星和X射线辐射流量变化的X射线变星等。
结构和演化 根据实际观测和光谱分析,我们可以了解恒星大气的基本结构。一般认为在一部分恒星中,最外层有一个类似日冕状的高温低密度星冕。它常常与星风有关。有的恒星已在星冕内发现有产生某些发射线的色球层,其内层大气吸收更内层高温气体的连续辐射而形成吸收线。人们有时把这层大气叫作反变层,而把发射连续谱的高温层叫作光球。其实,形成恒星光辐射的过程说明,光球这一层相当厚,其中各个分层均有发射和吸收。光球与反变层不能截然分开。太阳型恒星的光球内,有一个平均约十分之一半径或更厚的对流层。在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同。能量传输在光球层内以辐射为主,在对流层内则以对流为主。
对于光球和对流层,我们常常利用根据实际测得的物理特性和化学组成建立起来的模型进行较详细的研究。我们可以从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等。在恒星的中心,温度可以高达数百万度乃至数亿度,具体情况视恒星的基本参量和演化阶段而定。在那里,进行着不同的产能反应。一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能。进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应。这个过程很长,是恒星生命中最长的阶段。氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星,并有可能发生脉动。那些内部温度上升到近亿度的恒星,开始发生氦碳循环。在这些演化过程中,恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹。最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”(见恒星的形成和演化)。
关于恒星内部结构和演化后期的高密阶段的情况,主要是根据理论物理推导出来的,这还有待于观测的证实和改进。关于由热核反应形成的中微子之谜,理论预言与观测事实仍相去甚远。这说明原有的理论尚有很多不完善的地方(见中微子天文学)。因此,揭开中微子谜,对研究恒星尤其是恒星的内部结构和演化很有帮助
行星
新的行星定义包括以下三点:1,必须是围绕恒星运转的天体;2,质量必须足够大,它自身的吸引力必须和自转速度平衡使其形状呈圆球;3,不受到轨道周围其他物体的影响。一般来说,行星的直径必须在800公里以上,质量必须在50亿亿吨以上。
按照这一定义,目前太阳系内有12颗行星,分别是:水星、金星、地球、火星、谷神星、木星、土星、天王星、海王星、冥王星(由于新定义的出现,冥王星终于被踢出行星的行列)、原先被认为是冥王星卫星的“卡戎”和一颗暂时编号为“2003UB313”(齐娜)的天体。国际天文学联合会下属的行星定义委员会称,不排除将来太阳系中会有更多符合标准的天体被列为行星。目前在天文学家的观测名单上有可能符合行星定义的太阳系内天体就有10颗以上。
在新的行星标准之下,行星定义委员会还确定了一个新的次级定义——“类冥王星”。这是指轨道在海王星之外、围绕太阳运转周期在200年以上的行星。在符合新定义的12颗太阳系行星中,冥王星、“卡戎”和“2003UB313”都属于“类冥王星”。
天文学家认为,“类冥王星”的轨道通常不是规则的圆形,而是偏心率较大的椭圆形。这类行星的来源,很可能与太阳系内其他行星不同。随着观测手段的进步,天文学家还有可能在太阳系边缘发现更多大天体。未来太阳系的行星名单如果继续扩大,新增的也将是“类冥王星”。(
行星是自身不发光的,环绕着恒星的天体。一般来说行星需要具有一定的质量,行星的质量要足够的大,以至于它的形状大约是圆球状,质量不够的被成为小行星。行星的名字来自于它们的位置在天空中不固定,就好像它们在行走一般。
太阳系内的肉眼可见的5颗行星水星,金星,火星,木星,土星,人类经过千百年的探索,到16世纪哥白尼建立日心说后才普遍认识到:地球是绕太阳公转的行星之一,而包括地球在内的九大行星则构成了一个围绕太阳旋转的行星系—— 太阳系的主要成员。行星本身一般不发光,以表面反射太阳光而发亮。在主要由恒星组成的天空背景上,行星有明显的相对移动。离太阳最近的行星是水星,以下依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。从行星起源于不同形态的物质出发,可以把九大行星分为三类:类地行星(包括水、金、地、火)、巨行星(木、土)及远日行星(天王、海王、冥王)。行星环绕太阳的运动称为公转,行星公转的轨道具有共面性、同向性和近圆性三大特点。所谓共面性,是指九大行星的公转轨道面几乎在同一平面上;同向性,是指它们朝同一方向绕太阳公转;而近圆性是指它们的轨道和圆相当接近。
在一些行星的周围,存在围绕行星运转的物质环,由大量小块物体(如岩石,冰块等)构成,因反射太阳光而发亮,称为行星环。20世纪70年代之前,人们一直以为唯独土星有光环,以后相继发现天王星和木星也有光环,这为研究太阳系起源和演化提供了新的信息。
卫星是围绕行星运行的天体,月亮就是地球的卫星。卫星反射太阳光,但除了月球以外,其它卫星的反射光都非常微弱。卫星在大小和质量方面相差悬殊,它们的运动特性也很不一致。太阳系中,除了水星和金星以外,其它的行星各自都有数目不等的卫星。
在火星与木星之间分布着数十万颗大小不等、形状各异的小行星,沿着椭圆轨道绕太阳运行,这个区域称之为小行星带。此外,太阳系中还有数量众多的彗星,至于飘浮在行星际空间的流星体就更是无法计数了。
尽管太阳系内天体品种很多,但它们都无法和太阳相比。太阳是太阳系光和能量的源泉。也是太阳系中最庞大的天体,其半径差不多是地球半径的109倍,或者说是地月距离的18倍。太阳的质量比地球大33万倍,占到太阳系总质量的998%,是整个太阳系的质量中心,它以自己强大的引力将太阳系里的所有天体牢牢控制在其周围,使它们不离不散,井然有序地绕自己旋转。同时,太阳又作为一颗普通的恒星,带领它的成员,万古不息地绕银河系的中心运动。
(1) 类地行星:水星,金星,地球,火星
顾名思义,类地行星的许多特性与地球相接近,它们离太阳相对较近,质量和半径都较小,平均密度则较大。类地行星的表面都有一层硅酸盐类岩石组成的坚硬壳层,有着类似地球和月球的各种地貌特征。对于没有大气的星球(如水星), 其外貌类似于月球,密布着环形山和沟纹;而对于像有浓密大气的金星,则其表面地形更像地球。
星早在史前就已经被人类发现了。后来人类了解到,地球本身也是一颗行星
(2) 带光环的巨行星和遥远的远日行星
木星和土星是行星世界的巨人,称为巨行星。它们拥有浓密的大气层,在大气之下却并没有坚实的表面,而是一片沸腾着的氢组成的"汪洋大海"。所以它们实质上是液态行星。
天王星,海王星,冥王星这三颗遥远的行星称为远日行星,是在望远镜发明以后才被发现的。它们拥有主要由分子氢组成的大气,通常有一层非常厚的甲烷冰、氨冰之类的冰物质覆盖在其表面上,再以下就是坚硬的岩核。
冥王星失去行星地位,成为矮行星
位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。经过天文学界多年的争论以及本届国际天文学联合会大会上数天的争吵,冥王星终于“惨遭降级”,被驱逐出了行星家族。从此之后,这个游走在太阳系边缘的天体将只能与其他一些差不多大的“兄弟姐妹”一道被称为“矮行星”。
2006年8月24日,根据国际天文学联合会大会11时通过的新定义,“行星”指的是围绕太阳运转、自身引力足以克服其刚体力而使天体呈圆球状、并且能够清除其轨道附近其他物体的天体。按照新的定义,太阳系行星将包括水星、金星、地球、火星、木星、土星、天王星和海王星,它们都是在1900年以前被发现的。
根据新定义,同样具有足够质量、呈圆球形,但不能清除其轨道附近其他物体的天体被称为“矮行星”。冥王星是一颗矮行星。其他围绕太阳运转但不符合上述条件的物体被统称为“太阳系小天体”。
从2006年8月24日11起,新的太阳系八行星分别是:金星、木星、水星、火星、土星、地球、天王星和海王星。
新的天文发现不断使“九大行星”的传统观念受到质疑。天文学家先后发现冥王星与太阳系其他行星的一些不同之处。冥王星所处的轨道在海王星之外,属于太阳系外围的柯伊伯带,这个区域一直是太阳系小行星和彗星诞生的地方。20世纪90年代以来,天文学家发现柯伊伯带有更多围绕太阳运行的大天体。比如,美国天文学家布朗发现的“2003UB313”,就是一个直径和质量都超过冥王星的天体。
附:1、行星的定义:
a天体;b围绕太阳运转;c自身引力足以克服其刚体力而使天体呈圆球状;d能够清除其轨道附近的其它物体。
符合这一新定义的包括:
水星、金星、地球、火星、木星、土星、天王星、海王星,总计八颗。
2、矮行星的定义:
a天体;b围绕太阳运转;c自身引力足以克服其刚体力而使天体呈圆球状;d不能够清除其轨道附近的其它物体;e不是卫星。
符合这一定义的包括:
谷神星、冥王星、齐娜,总计三颗。
附资料
谷神星:直径约950公里,平均距日距离约42亿公里,公转周期约46年。原属于小行星的范畴。
冥王星:直径约2400公里,平均距日距离约59亿公里,公转周期约248年。冥王星有三颗卫星,卡戎、S/2005 P1、S/2005 P2,后两颗卫星直径约50到60公里,公转周期为38天和25天。原属于九大行星的范畴。
齐 娜:天文编号为2003UB313,齐娜是它的昵称,直径在2300到2500公里之间,平均距日距离约160亿公里,公转周期约560年。2003年新发现的天体,正是由于它的发现,导致太阳系天体类别划分的争论。(既然冥王星都是行星,那么齐娜就应该成为太阳系的第十大行星)
关于卡戎:直径1200公里,围绕冥王星旋转,公转周期等于冥王星的自转周期为64天。虽然卡戎的直径比谷神星还要大,但它是冥王星的卫星,所以不属于矮行星的范围。
3、太阳系小天体的定义:
a天体;b围绕太阳运转;c不符合行星和矮行星的定义。
原来的小行星、彗星等全部归入太阳系小天体的范畴。
卫星
1指围绕行星公转的星体,如月球绕地球公转,月球是地球的卫星.
2人造地球卫星的简称,用途广泛
1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”,由“长征一号”运载火箭一次发射成功。卫星运行轨道距地球最近点439公里,最远点2384公里,轨道平面和地球赤道平面的夹角685度,绕地球一周114分钟。卫星重173公斤,用20009兆周的频率,播送《东方红》乐曲。实现了毛泽东主席提出的“我们也要搞人造卫星”的号召。它是中国的科学之星,是中国工人阶级、解放军、知识分子共同为祖国做出的杰出贡献。
自1957年前苏联将世界第一颗人造卫星送入环地轨道以来,人类已经向浩瀚的宇宙中发射了大量的飞行器。据美国一个名为“关注科学家联盟”的组织近日公布的最新全世界卫星数据库显示,目前正在环绕地球飞行的共有795颗各类卫星,而其中一半以上属于世界上唯一的超级大国美国,它所拥有的卫星数量已经超过了其他所有国家拥有数量的总和,达413颗,军用卫星更是达到了四分之一以上。
因为这个星云的形状有点像螃蟹被取名为蟹状星云。这个星云是在1731年被英国的一位天文爱好者比维斯发现的。
根据中国历史记载,在现在蟹状星云的那个位置上,曾经有过超新星爆发,那就是1054年7月出现的、特亮的金牛座“天关客星”。它爆发过程中抛射出来的气体云,就应该是现在看到的蟹状星云。1921年,美国科学家把两批相隔12年的蟹状星云照片进行了仔细和反复的比较之后,确认星云的椭圆形外壳仍在高速膨胀,速度达到每秒1300千米。1942年,荷兰天文学家奥尔特以其令人信服的论证,确认蟹状星云就是1054年超新星爆发后形成的。
蟹状星云还是强红外源、紫外源、X射线源和γ射线源。它的总辐射光度的量级比太阳强几万倍。1968年发现该星云中的射电脉冲星,它的脉冲周期是00331秒,为已知脉冲星中周期最短的一个。目前已公认,脉冲星是快速自旋的中子星,有极强的磁性,是超新星爆发时形成的坍缩致密星。蟹状星云脉冲星的质量约为一个太阳质量,其发光气体的质量也约达一个太阳质量,可见该星云爆发前是质量比太阳大若干倍的大天体。星云距离约6300光年,星云大小约12光年×7光年。
公元1054年7月4日(宋仁宗至和元年五月二十六日)《宋史·天文志》记载:“客星出天关东南可数寸,岁余稍末”;《宋会要》中记载:“嘉佑元年三月,司天监言:‘客星没,客去之兆也’。初,至和元年五月,晨出东方,守天关,昼见如太白,芒角四出,色赤白,凡见二十三日”。这是关于一颗超新星的记载,它的残骸,就是我们现在看到的蟹状星云。
1888年出版《星云星团新总表》列为NGC1952,《梅西耶星团星云表》中列第一,代号M1。蟹状星云的名称是英国天文爱好者罗斯命名的。M1是最著名的超新星残骸。这颗位于金牛座的超新星爆发当时估计其绝对星等达到了-6等,相当于满月的亮度,它的实际光度比太阳高5亿倍,在白天也能看到,给当时的人们留下了极深刻的印象。不仅如此,它的遗迹星云至今的辐射也比太阳大,射电观测发现它的辐射强度和波长之间的关系不能用黑体辐射定律解释,要发射这样强的无线辐射,它的温度要在50万度以上,对一个扩散的星云来说,这是不可能的,前苏联天文学家什克洛夫斯基1953年提出,蟹状星云的辐射不是由于温度升高产生的,而是由“同步加速辐射”的机制造成的。这个解释已得到证实。蟹状星云中央脉冲星的发现,获得了1974年的“诺贝尔物理奖”,它是1982年前发现的周期最短的脉冲星,只有0033秒,并且直到现在,能够在所有电磁波段上观察到脉冲现象的只有它和另一颗很难观测的脉冲星。这颗高速自旋的脉冲星证明了30年代对中子星的预言,肯定了一种恒星演化理论:超新星爆发时,气体外壳被抛射出去,形成超新星遗迹,就象蟹状星云,而恒星核心却迅速坍缩,由恒星质量决定它的归宿是颗白矮星或是中子星或是黑洞。中子星内部没有热核反应,但它的能量却又大的惊人,比太阳大几十万倍,这样大的能量消耗,靠的是自转速度的变慢,即动能的减少来补偿,才能符合能量守恒定律。第一个被观测到的自转周期变长的中子星,恰好是M1中的中子星。总之,人类对蟹状星云的研究占了当代天文学研究的很大比重,也的确得到了相当比重的研究成果。
欢迎分享,转载请注明来源:表白网
评论列表(0条)