1)同角三角函数的基本关系
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1
商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
(2)二倍角公式
正弦sin2A=2sinA·cosA
余弦1Cos2a=Cos^2(a)-Sin^2(a) 2Cos2a=1-2Sin^2(a) 3Cos2a=2Cos^2(a)- 1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切tan2A=(2tanA)/(1-tan^2(A))
(3)半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) (这个很有用)
(4)两角和差公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
(5)和差化积 (高考不要求)
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
(6)积化和差 (高考不要求)
sinαsinβ =-[cos(α+β)-cos(α-β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
(7)万能公式
sinα=2tan(α/2)/[1+(tan(α/2))^2;]
cosα=[1-(tan(α/2))^2;]/[1+(tan(α/2))^2;]
tanα=2tan(α/2)/[1-(tan(α/2))^2;]
(8) 诱导公式:奇变偶不变,符号看象限
tan30°=√3/3 tan45°=1 tan60° =√3 tan90=∅
sin、cos、各度数的值如下:
一、sin
sin30°=1/2 sin45°=√2/2 sin60°=√3/2 sin90°=1
二、cos
cos30°=√3/2 cos45°=√2/2 cos60°=1/2 cos90°=0
扩展资料:
三角函数和与差的计算
参考资料:
sin cos tan度数公式
一、sin度数公式
1、sin 30= 1/2
2、sin 45=根号2/2
3、sin 60= 根号3/2
二、cos度数公式
1、cos 30=根号3/2
2、cos 45=根号2/2
3、cos 60=1/2
三、tan度数公式
1、tan 30=根号3/3
2、tan 45=1
3、tan 60=根号3
扩展资料:
1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
参考资料:
可以表白的数学公式:128根号e980、[(n+528)×5–39343]÷05-10×n、X2+(y+3√X2)2=1、r=a(1-cosθ)或r=a(1+cosθ)、x2+(y-3√x2)2=1。
1、128根号e980
I Love You的数学公式最早来源于韩国歌手Kwill的一首MV,叫《I need you》。女孩在黑板上写了一个数学公式“128根号e980”,让男主角解答,男主角冥思苦想都算不出来,于是女孩拿起刷子擦掉公式的上半部分,就变成了英文的 I Love You。
2、[(n+528)×5–39343]÷05-10×n ( N=任意数)
一个任意实数,加528,结果乘以5,再减34343结果乘以2,最后减去这个数的10倍。
3、X2+(y+3√X2)2=1
画出函数图像来,是一个心。
4、r=a(1-cosθ)或r=a(1+cosθ)(a>0)水平方向
心形线
5、x2+(y-3√x2)2=1
数轴上形成一颗爱心,这就是数学系的专属“爱心曲线”
欢迎分享,转载请注明来源:表白网
评论列表(0条)